期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
基于残差型G-LSSVM的岩石冒落高度及碴石厚度预测 被引量:3
1
作者 陈尚波 张耀平 +1 位作者 夏弋江 田留峰 《金属矿山》 CAS 北大核心 2013年第8期8-10,15,共4页
受限于空区形成条件及其变化的复杂性、随机性,传统用于空区顶板围岩冒落高度及碴石厚度预测的方法往往预测精度偏低。为此,在结合各种单一人工智能预测方法优势的基础上,提出了一种新的预测模型——残差型灰色最小二乘支持向量机预测模... 受限于空区形成条件及其变化的复杂性、随机性,传统用于空区顶板围岩冒落高度及碴石厚度预测的方法往往预测精度偏低。为此,在结合各种单一人工智能预测方法优势的基础上,提出了一种新的预测模型——残差型灰色最小二乘支持向量机预测模型(G-LSSVM),将该模型应用到某铁矿的覆盖层冒落高度及碴石厚度预测中,预测的结果与实际钻孔摄影监测相比,结果极为接近。研究表明:残差型G-LSSVM用于覆盖层冒落高度及碴石厚度预测是有效可行的。 展开更多
关键词 残差型 最小二乘支持向量机 覆盖层冒落高度 碴石厚度 预测 钻孔摄影
在线阅读 下载PDF
一种结合孪生倒残差与自注意力增强的遥感影像变化检测方法
2
作者 张荞 曹志成 +3 位作者 沈洋 汪宙峰 王成武 许嘉欣 《自然资源遥感》 北大核心 2025年第3期85-94,共10页
遥感影像变化检测在国土调查更新、城市发展监测与规划等方面中具有重大的应用需求。针对遥感影像变化检测在实际应用中面临的挑战,文章提出了一种结合孪生倒残差结构与自注意力增强的轻量级变化检测方法。该方法通过引入孪生的改进型... 遥感影像变化检测在国土调查更新、城市发展监测与规划等方面中具有重大的应用需求。针对遥感影像变化检测在实际应用中面临的挑战,文章提出了一种结合孪生倒残差结构与自注意力增强的轻量级变化检测方法。该方法通过引入孪生的改进型倒残差结构替代传统卷积神经网络结构作为骨干网络,充分提取特征信息且大幅降低网络复杂度,使用自注意力增强模块提升网络的全局信息关注能力,在损失函数中加入边缘权重精准优化提取结果的细节,利用多层次的跳接残差连接充分融合全局与局部特征。在公开和自制的遥感影像变化检测数据集上对该方法分别进行性能测试,结果表明,所提方法相较于其他变化检测方法,在不降低检测精度的前提下大幅减少了网络参数量和计算量,实现了遥感影像变化检测模型轻量化。 展开更多
关键词 遥感影像 变化检测 改进残差 自注意力增强模块 轻量化模
在线阅读 下载PDF
基于对称残差U型网络的路网交通流量数据修复 被引量:4
3
作者 代亮 梅洋 +2 位作者 李曙光 钱超 汪贵平 《交通运输系统工程与信息》 EI CSCD 北大核心 2020年第5期93-99,共7页
针对路网交通数据采集过程中,采集设备稀缺或故障等原因造成路网交通流量数据缺失问题,提出基于对称残差U型网络(Residual U-Net,RU-Net)模型的大规模路网交通流量数据修复方法.通过将路网交通流量数据网格化和时序通道化操作,构成可供... 针对路网交通数据采集过程中,采集设备稀缺或故障等原因造成路网交通流量数据缺失问题,提出基于对称残差U型网络(Residual U-Net,RU-Net)模型的大规模路网交通流量数据修复方法.通过将路网交通流量数据网格化和时序通道化操作,构成可供卷积操作的张量数据格式;利用RU-Net编码解码能力,对交通流量数据进行编码;在解码过程中保持失真度较小,使模型学习到交通流量数据内部多因素耦合特性.通过残差学习使交通流量数据编码后的信噪比提升,压缩率降低,提升模型修复精度.实验结果表明,RU-Net模型能够利用交通流量特性学习历史和非故障采集点数据与待修复数据的映射关系,在不同数据缺失率,不同缺失模式下,高效地完成对大规模路网交通流量数据的修复. 展开更多
关键词 智能交通 交通数据修复 残差U网络 大规模路网 残差学习
在线阅读 下载PDF
基于深度残差U型网络的果园环境识别 被引量:1
4
作者 商高高 朱鹏 刘刚 《计算机应用与软件》 北大核心 2023年第5期235-242,共8页
果园环境复杂多变,传统机器视觉识别算法易受到光照阴影等因素影响,识别目标能力有限且精度较低。深度残差U型网络可对果园环境中的树木、可行驶道路、杂物等进行语义分割。网络基本结构采用U型网络,在编码层和瓶颈层中加入残差学习,利... 果园环境复杂多变,传统机器视觉识别算法易受到光照阴影等因素影响,识别目标能力有限且精度较低。深度残差U型网络可对果园环境中的树木、可行驶道路、杂物等进行语义分割。网络基本结构采用U型网络,在编码层和瓶颈层中加入残差学习,利用残差模块提升网络深度,增强不同层次的语义信息融合,提高特征表达能力和识别准确率;解码层中采用上采样进行特征映射,方便快捷,并通过跳跃连接融合编码层的语义信息,减少网络参数,加速训练。通过PyTorch深度学习框架搭建网络,训练数据集,并将该网络与全卷积神经网络和U型网络进行对比实验,结果表明深度残差U型网络识别准确率最高,平均交并比为83.3%,适用于果园环境识别。 展开更多
关键词 环境识别 机器视觉 深度残差U网络 语义分割 信息融合
在线阅读 下载PDF
空洞残差U型网络用于视网膜血管分割 被引量:14
5
作者 胡扬涛 裴洋 +2 位作者 林川 李世成 易玉根 《计算机工程与应用》 CSCD 北大核心 2021年第7期185-191,共7页
青光眼是一种不可逆转的致盲性眼科疾病,应当早发现和早治疗。但人工诊断是费时费力的过程,而且受基层医疗资源的限制,人工诊断很容易产生漏诊和误诊的现象。因此,利用深度学习技术辅助诊断眼疾病具有重大意义。如何更为准确且有效地分... 青光眼是一种不可逆转的致盲性眼科疾病,应当早发现和早治疗。但人工诊断是费时费力的过程,而且受基层医疗资源的限制,人工诊断很容易产生漏诊和误诊的现象。因此,利用深度学习技术辅助诊断眼疾病具有重大意义。如何更为准确且有效地分割视网膜血管成为眼疾病辅助诊断的研究热点问题。于是,基于U型网络(U-Net)提出一种新的网络结构称为空洞残差U型网络(Atrous Residual U-Net,AR-Unet)。在AR-Unet中,为了避免U-Net中的梯度消失以及图像结构信息丢失等问题,将残差网络(ResNet)引入到U-Net中。为了扩大感受野和提高物体间的相关性,再将空洞卷积(Atrous Convolution)整合到U-Net中,从而使得血管分割更加精确。在三个公开的彩色眼底图像数据集DRIVE、STARE和CHASE上进行大量实验,结果表明在不同评价指标下,AR-Unet方法的性能均要优于大多数对比方法。 展开更多
关键词 视网膜血管分割 空洞残差U网络 空洞卷积 U网络 残差网络
在线阅读 下载PDF
基于卷积神经网络的线结构光高精度三维测量方法 被引量:1
6
作者 叶涛 何威燃 +2 位作者 刘国鹏 欧阳煜 王斌 《仪器仪表学报》 北大核心 2025年第2期183-195,共13页
线结构光视觉三维测量技术因其高精度和非接触的三维重建优势而被广泛应用。然而,现有的线结构光三维测量方法在标定过程中往往面临较高的耦合性问题,且在复杂环境下,背景噪声和光照变化会严重干扰条纹的提取,导致结构光条纹中心定位精... 线结构光视觉三维测量技术因其高精度和非接触的三维重建优势而被广泛应用。然而,现有的线结构光三维测量方法在标定过程中往往面临较高的耦合性问题,且在复杂环境下,背景噪声和光照变化会严重干扰条纹的提取,导致结构光条纹中心定位精度下降,进而影响整体三维测量的精度和鲁棒性。针对上述问题,提出了一种基于卷积神经网络的鲁棒三维测量方法。首先,设计了一种创新性的残差U型块特征金字塔网络(RSU-FPN),旨在实现背景噪声的干扰抑制和结构光条纹区域中心的高精度鲁棒提取。其次,构建了一种新型的线结构光视觉传感器,并提出了一种分离式测量模型,成功将摄像机标定与光平面标定解耦,极大地提高了系统的灵活性与扩展性。通过这种解耦的标定方式,避免了传统标定方法中存在的耦合问题,使得整个测量系统更加高效且易于调整。实验结果表明,所提出的基于卷积神经网络的鲁棒三维测量方法,在复杂背景下能够实现结构光条纹中心的高精度提取,利用提取出的光条纹中心进行标定,其均方根误差分别为x方向0.005 mm、y方向0.009 mm以及z方向0.097 mm。并且,该方法在不同表面类型(如漫反射表面和光滑反射表面)上均能实现高精度的三维重建,验证了其在实际应用中的优越性和强大的鲁棒性。 展开更多
关键词 线结构光 三维测量 卷积神经网络 残差U块特征金字塔网络 背景噪声抑制
在线阅读 下载PDF
基于非结构化网格的三维大地电磁自适应矢量有限元模拟 被引量:20
7
作者 刘长生 汤井田 +1 位作者 任政勇 冯德山 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第5期1855-1859,共5页
基于能够模拟复杂模型的非结构化网格,提出基于矢量单元的三维自适应有限元大地电磁模拟算法。其过程是:利用残差型的后验误差算子初步估算粗网格上的单元误差,通过加密误差超过限定的单元,生成新的网格;对新的网格重复上一步过程,从而... 基于能够模拟复杂模型的非结构化网格,提出基于矢量单元的三维自适应有限元大地电磁模拟算法。其过程是:利用残差型的后验误差算子初步估算粗网格上的单元误差,通过加密误差超过限定的单元,生成新的网格;对新的网格重复上一步过程,从而得到更加精确的数值结果;重复迭代过程直到计算结果的精度达到预定要求为止,从而生成最优化的有限元网格;基于COMMEMI 3D-1 MT模型的数值模拟,验证本文算法的正确性。研究结果表明:通过自适应的网格加密和迭代求解过程,本文算法可以产生迭代收敛的数值结果,计算结果具有较高的精度。 展开更多
关键词 MT三维正演 非结构化网格 矢量有限元 残差型后验误差 h-自适应有限元
在线阅读 下载PDF
基于双层路由注意力机制的煤粒粒度定量分析
8
作者 程德强 郑丽娟 +2 位作者 刘敬敬 寇旗旗 江鹤 《工矿自动化》 CSCD 北大核心 2024年第2期9-17,共9页
煤粒粒度分布特征与煤中甲烷气体传播规律的分析密切相关。目前,基于图像分割的煤粒粒度分析方法已成为获取煤粒粒度的主流方案之一,但存在上下文信息丢失、煤粒特征融合不当造成煤粒漏分割和过分割等问题。针对上述问题,设计了一种基... 煤粒粒度分布特征与煤中甲烷气体传播规律的分析密切相关。目前,基于图像分割的煤粒粒度分析方法已成为获取煤粒粒度的主流方案之一,但存在上下文信息丢失、煤粒特征融合不当造成煤粒漏分割和过分割等问题。针对上述问题,设计了一种基于双层路由注意力机制(BRA)的煤粒粒度分析模型。在残差U型网络ResNet-UNet中嵌入BRA模块,得到B-ResUNet网络模型:为减少在煤粒分割过程中出现的漏分割问题,在ResNet-UNet网络的上采样前添加BRA模块,使网络根据上一层的特征调整当前特征层的重要性,增强特征的表达能力,提高长距离信息的传递能力;为减少在煤粒分割过程中出现的过分割问题,在ResNet-UNet网络的特征拼接模块后添加BRA模块,通过动态选择和聚合重要特征,实现更有效的特征融合。对分割出的煤粒进行特征信息提取,针对实验分析中采用的煤粒数据集的煤粒粒度与细胞大小相当,为精确表征煤粒粒度,采用等效圆粒径获取煤粒粒度及粒度分布。实验结果表明:①B-ResUNet网络模型的准确率、平均交并比、召回率较ResNet-UNet基础网络分别提高了0.6%,14.3%,35.9%,准确率达99.6%,平均交并比达92.6%,召回率达94.4%,B-ResUNet网络模型在煤样中具有较好的分割效果,能够检测出较为完整的颗粒结构。②在上采样前和特征拼接后均引入BRA模块时,网络对煤粒的边缘区域给予了足够的关注,且对一些不太重要的区域减少了关注度,从而提高了网络的计算效率。③煤粒的粒度大小在1~2 mm内呈相对均衡的分布趋势,粒度在1~2 mm内的煤粒占比最大为99.04%,最小为90.59%,表明基于BRA的图像处理方法在粒度分析方面具有较高的准确性。 展开更多
关键词 煤粒粒度 粒度分布 双层路由注意力机制 图像处理 残差U网络 语义分割 等效圆粒径
在线阅读 下载PDF
过程控制图在股票收益波动分析中的应用研究 被引量:4
9
作者 张力健 刘志新 杨继平 《管理工程学报》 CSSCI 2008年第4期140-145,共6页
应用AR型残差控制图解决过程自相关问题;用受控过程的条件标准差替代无条件标准差,构造控制图的控制线,解决过程波动簇聚问题。在实证中,以上证50指数中股票的周收益序列为样本过程,根据其统计性质将其分为四类,并分别举例、选择适当的... 应用AR型残差控制图解决过程自相关问题;用受控过程的条件标准差替代无条件标准差,构造控制图的控制线,解决过程波动簇聚问题。在实证中,以上证50指数中股票的周收益序列为样本过程,根据其统计性质将其分为四类,并分别举例、选择适当的控制图加以监控。然后,对控制图识别出的异常点举例进行验证、分析,以评价控制图应用于股票收益序列监控的有效性。 展开更多
关键词 统计过程控制 AR残差控制图 ARCH控制图 AR-ARCH残差控制图 股票周收益序列
在线阅读 下载PDF
白细胞图像超分辨率重建研究 被引量:1
10
作者 王伟 胡涛 +3 位作者 李欣蔚 沈思婉 姜小明 刘峻源 《计算机科学》 CSCD 北大核心 2021年第4期164-168,共5页
近年来,计算机视觉已成为各类学科领域研究的重点,逐渐被应用于各类科研场景。医务工作者在临床上做血常规检验时,经常会采用血细胞图像分析系统对镜下白细胞图像进行自动计数与分类。其中,白细胞图像质量影响着血细胞分析系统计数分类... 近年来,计算机视觉已成为各类学科领域研究的重点,逐渐被应用于各类科研场景。医务工作者在临床上做血常规检验时,经常会采用血细胞图像分析系统对镜下白细胞图像进行自动计数与分类。其中,白细胞图像质量影响着血细胞分析系统计数分类的效果。针对镜下白细胞图像细节模糊的问题,文中尝试引入超分辨率方法对图片进行优化,以达到使白细胞图像更清晰的目的。所提出的方法在现有生成对抗网络的超分辨率方法(Super-Resolution Generative Adversarial Network,SRGAN)的基础上,设计引入嵌套型残差密集块(Residual-in-Residual Dense Block,RRDB)来改进网络结构,并对原有标准残差块中的批量规范化层进行删减,以提升网络性能,另外还对判别器的损失函数进行了改进。实验结果表明,该方法(SRGAN+)与3种插值法以及4种基于学习的超分辨率方法相比,在提高分辨率的同时,获得了图片细节更丰富、人眼视觉更优的图像。与SRGAN方法相比,改进算法在峰值信噪比(Peak Signal-to-noise Ratio,PSNR)和结构相似度(Structural SIMilarity,SSIM)上分别有1.008 dB和1.07%的提高。 展开更多
关键词 白细胞图像 超分辨率 生成对抗网络 嵌套残差密集块
在线阅读 下载PDF
基于DCResNet的SAR图像车辆目标识别 被引量:4
11
作者 王强 曹磊 +2 位作者 史润佳 杨非 蒋忠进 《雷达科学与技术》 北大核心 2021年第4期387-392,402,共7页
合成孔径雷达(SAR)图像自动目标识别中,特征提取和目标分类是两个重要环节。残差网络(ResNet)作为一种较新的卷积神经网络,凭借其对目标特征的自适应学习能力,在SAR图像分类领域表现突出。本文在ResNet基础上,设计出了密集连接型残差网... 合成孔径雷达(SAR)图像自动目标识别中,特征提取和目标分类是两个重要环节。残差网络(ResNet)作为一种较新的卷积神经网络,凭借其对目标特征的自适应学习能力,在SAR图像分类领域表现突出。本文在ResNet基础上,设计出了密集连接型残差网络(DCResNet),用于SAR图像目标识别。DCResNet在残差模块中增加了跳跃性连接的密度,不仅继承了ResNet的易学习的优点,还加强了特征的传播和利用率。除此之外,DCResNet采用平均池化的方式进行下采样,抑制了SAR图像中噪声对识别精度造成的影响。关于SAR图像目标识别的实验结果证明,本文提出的DCResNet与ResNet、AlexNet相比,不仅具有更快的收敛速度和推理速度,而且目标分类的准确率更高。 展开更多
关键词 SAR图像 深度学习 目标识别 残差网络 密集连接残差网络
在线阅读 下载PDF
基于V-ResNet的电阻抗层析成像方法 被引量:7
12
作者 付荣 张新宇 +2 位作者 王子辰 王迪 陈晓艳 《仪器仪表学报》 EI CAS CSCD 北大核心 2021年第9期279-287,共9页
电阻抗层析成像技术(EIT)因其非侵入和可视化等特性为人体肺部空间特性的监测提供了一种有效的方法。但是EIT的逆问题具有严重的非线性、病态性和欠定性,使得图像重建结果含有严重的伪影。针对上述问题,提出了一种由预映射、特征提取、... 电阻抗层析成像技术(EIT)因其非侵入和可视化等特性为人体肺部空间特性的监测提供了一种有效的方法。但是EIT的逆问题具有严重的非线性、病态性和欠定性,使得图像重建结果含有严重的伪影。针对上述问题,提出了一种由预映射、特征提取、深度重建以及残差去噪四个模块构成的V-ResNet的深度网络成像算法,实现对场域空间位置和电导率参数分布的重建。该算法有效地增加了前馈信息的多重传递并解决了深度网络的梯度消失问题,同时残差去噪模块有效地平滑了图像边界。采用相对误差(RE)和结构相似度(SSIM)来衡量成像质量,实验得出RE的平均值为0.14,SSIM平均值为0.96。仿真与实验结果表明,基于V-ResNet的成像算法与传统的成像算法相比,图像重建结果边界清晰,空间分辨率高。 展开更多
关键词 电阻抗层析成像 逆问题 V残差去噪网络 图像重建
在线阅读 下载PDF
穿墙雷达多维参数人体姿态识别方法 被引量:5
13
作者 毛强 晋良念 刘庆华 《雷达科学与技术》 北大核心 2021年第1期40-47,共8页
现有的人体姿态识别方案大多数是从单一的角度来考察人体的姿态特征,但是仅采用距离像很难体现人体关节的位置信息,仅提取微多普勒特征有时会覆盖掉径向速度不明显的特征。为此,本文首先利用慢时间-距离像和慢时间-微多普勒谱图构建出... 现有的人体姿态识别方案大多数是从单一的角度来考察人体的姿态特征,但是仅采用距离像很难体现人体关节的位置信息,仅提取微多普勒特征有时会覆盖掉径向速度不明显的特征。为此,本文首先利用慢时间-距离像和慢时间-微多普勒谱图构建出人体姿态的三维张量数据集,扩展了人体姿态的特征维度,然后采用改进型瓶颈残差模块构成的神经网络提高了人体姿态的识别率。实验结果表明,通过对4名受试者的8种姿态进行训练和测试,该网络对人体姿态的三维张量数据集的识别率可达97.78%,相比于单一特征数据集的识别率提高了4%~7%。 展开更多
关键词 穿墙雷达 人体姿态识别 三维张量数据集 改进瓶颈残差神经网络
在线阅读 下载PDF
基于注意力机制的多尺度特征融合网络用于宫颈细胞核分割 被引量:2
14
作者 张玉琦 李捷 +2 位作者 王巍 徐敏 张瑞雪 《计算机应用》 CSCD 北大核心 2022年第S02期259-266,共8页
宫颈细胞图像中嘈杂的背景、不良的对比度、正常和异常细胞中细胞核形状和大小的差异给自动分割带来了极大的困难。因此,提出一种新颖的基于注意力机制的多尺度特征融合网络(AMF-Net)。首先,以残差U型网络作为骨干网络,通过更深的网络... 宫颈细胞图像中嘈杂的背景、不良的对比度、正常和异常细胞中细胞核形状和大小的差异给自动分割带来了极大的困难。因此,提出一种新颖的基于注意力机制的多尺度特征融合网络(AMF-Net)。首先,以残差U型网络作为骨干网络,通过更深的网络层数来有效地提升性能,增加特征的复用能力;其次,针对癌变细胞中核边界模糊、核质对比度降低的问题,将注意力模块添加到网络中,通过集合空间和通道两个维度的注意力图,对宫颈细胞核特征细化;然后,由于癌变细胞核的形状一般情况下由圆形轮廓变为不规则轮廓,通过采用多个不同膨胀因子的空洞卷积并结合残差结构构成多尺度输入模块,克服U型网络感受野的局限性以更好地处理不规则轮廓形状的癌变细胞核;最后,针对宫颈图像中正常细胞核很小的特点,将focal loss与dice loss相结合作为损失函数以解决前景与背景不平衡的问题。在Herlev数据集中进行有效性验证,结果表明AMF-Net的Zijdenbos相似指数(ZSI)为0.9728,能够有效地提升宫颈细胞核的检测精度。 展开更多
关键词 残差U网络 注意力机制 多尺度特征融合 医学图像分割 宫颈细胞核分割
在线阅读 下载PDF
DRUSR:面向效果的图像超级分辨率重建 被引量:1
15
作者 李昊 赵光哲 《计算机工程与应用》 CSCD 北大核心 2023年第24期165-175,共11页
图像超分辨率(super resolution,SR)重建是计算机视觉领域的热点问题,重点是利用深度学习将图像重建模型作为提高图像和视频分辨率的重要图像技术。往往这些重建模型的网络结构比较简单,就会导致梯度传递愈发困难,更会导致效率低下,而... 图像超分辨率(super resolution,SR)重建是计算机视觉领域的热点问题,重点是利用深度学习将图像重建模型作为提高图像和视频分辨率的重要图像技术。往往这些重建模型的网络结构比较简单,就会导致梯度传递愈发困难,更会导致效率低下,而且重建后的图像依然存在细节丢失、噪声过大等问题,故提出一种改进生成网络中的残差块和判别网络中的判别模型的GAN(generative adversarial networks)图像超级分辨率重建模型。在模型结构上,将组成生成网络的基本单位简化成Conv+RELU,再进行重新设计,将密集残差网络的思想融入其中并重新设计组合成新的生成模型,将判别网络中的顺序连接的残差块进行了重新设计来实现更优的性能。训练模型所使用的数据集是DIV2K和Flickr2K。从最后得出的实验结果对比来看,在Set5、Set14、BSD100、Urban100四个公开的数据集上,所提出的模型相较于其他五个主流重建模型在图像重建质量的峰值信噪比(PSNR)、结构相似性(SSIM)上均提升1%~4%不等,在主观观感上也有所提高。 展开更多
关键词 U网络 递减残差 生成对抗网络 超分辨率
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部