期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
一种自适应残差卷积自编码网络及其故障诊断应用
1
作者 潘天成 陈龙 +1 位作者 蒲春雷 陈志强 《机电工程》 北大核心 2025年第3期529-538,共10页
针对传统卷积自编码器(CAE)会将不同故障产生的相似信号进行相同的非线性变换,导致故障诊断准确率下降的问题,提出了一种自适应残差卷积自编码网络(ARCAE),并将其应用于滚动轴承故障诊断中。首先,在残差模块的基础上,引入了自适应参数... 针对传统卷积自编码器(CAE)会将不同故障产生的相似信号进行相同的非线性变换,导致故障诊断准确率下降的问题,提出了一种自适应残差卷积自编码网络(ARCAE),并将其应用于滚动轴承故障诊断中。首先,在残差模块的基础上,引入了自适应参数化修正线性单元(APReLU),建立了自适应残差模块(ARM),ARM可以对相似的输入特征进行自适应非线性变换,避免了特征的错误识别;其次,在CAE中嵌入多级ARM,构建了ARCAE,增加了CAE的深度,提取了更具鉴别性的深层次特征,同时有效防止了网络加深而造成的性能退化;最后,基于ARCAE建立了针对一维信号的故障诊断新方法,将其应用于无监督滚动轴承故障诊断中,并通过两个不同类型的实验,对上述方法的有效性进行了验证。研究结果表明:在恒定转速工况下,ARCAE的诊断准确率最高,平均准确率达到了97.05%,且标准差仅为0.007,远低于其他几种传统CAE网络;在变转速工况下,ARCAE模型诊断准确率仍然是最高的,平均准确率达到了93.25%,由此说明ARCAE具有较高的特征提取能力和分类准确率;此外,变转速工况下,由于转速变化导致不同状态的振动信号特征差异变大,诊断难度加大,但与其他几种传统CAE网络相比,ARCAE诊断准确率下降最少,仅为5.37%,说明ARCAE具有更强的鲁棒性和稳定性。 展开更多
关键词 滚动轴承 自适应残差卷积自编码网络 自适应参数化修正线性单元 自适应残差模块 无监督故障诊断 特征提取
在线阅读 下载PDF
残差卷积自编码网络无监督迁移轴承故障诊断 被引量:14
2
作者 温江涛 张鹏程 +1 位作者 孙洁娣 雷鸣 《中国机械工程》 EI CAS CSCD 北大核心 2022年第14期1707-1716,共10页
深度学习类轴承故障智能诊断研究中,一般会假设训练数据与测试数据同分布且典型故障样本充足,而实际工况复杂多变,难以获得大量标签数据。将残差学习引入卷积自编码,并结合迁移学习,提出了基于残差卷积自编码无监督域自适应迁移的故障... 深度学习类轴承故障智能诊断研究中,一般会假设训练数据与测试数据同分布且典型故障样本充足,而实际工况复杂多变,难以获得大量标签数据。将残差学习引入卷积自编码,并结合迁移学习,提出了基于残差卷积自编码无监督域自适应迁移的故障诊断方法。堆叠一维卷积自编码进行特征提取,通过残差学习避免过拟合,提高学习效率;融合多层多核概率分布适配来约束网络学习域不变特征;实现了基于无监督域自适应迁移学习的故障诊断,并获得了较高准确率的识别结果。采用凯斯西储大学轴承数据集进行验证,结果证明了所提出方法的有效性,此外还对主要参数及其影响进行了探讨并给出了对比结果。 展开更多
关键词 轴承故障诊断 无监督学习 深度迁移 残差卷积自编码 域自适应
在线阅读 下载PDF
基于改进残差卷积自编码网络的类自适应旋转机械故障诊断 被引量:5
3
作者 张剑 程培源 邵思羽 《计算机应用》 CSCD 北大核心 2022年第8期2440-2449,共10页
针对旋转机械传感器信号样本有限影响深层网络模型训练学习的问题,提出一种结合改进残差卷积自编码网络与类自适应方法的故障诊断模型应对小样本数据。首先将少量已标记的源域数据和目标域数据创建为成对样本,并设计一种改进的一维残差... 针对旋转机械传感器信号样本有限影响深层网络模型训练学习的问题,提出一种结合改进残差卷积自编码网络与类自适应方法的故障诊断模型应对小样本数据。首先将少量已标记的源域数据和目标域数据创建为成对样本,并设计一种改进的一维残差卷积自编码网络对两种不同分布的原始振动信号进行特征提取;其次,利用最大均值差异(MMD)减小分布差异,并将两个域同一故障类别的数据空间映射到一个共同的特征空间,最终实现准确的故障诊断。实验结果表明,与微调、域自适应等方法相比,所提模型能够有效提高不同工况、微量已标记的目标域振动数据下的故障诊断准确率。 展开更多
关键词 残差卷积自编码网络 类自适应 旋转机械故障诊断 小样本 最大均值差异
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部