期刊文献+
共找到2,535篇文章
< 1 2 127 >
每页显示 20 50 100
基于残差分组卷积神经网络和多级注意力机制的源荷极端场景辨识方法 被引量:1
1
作者 郭红霞 李渊 +2 位作者 陈凌轩 王建学 马骞 《电网技术》 北大核心 2025年第2期459-469,I0019-I0024,共17页
为应对极端天气事件给新型电力系统安全稳定运行带来的影响,在电网的生产模拟中需要考虑极端场景。然而极端场景历史样本数量少,传统场景生成方法无法直接生成极端场景,需要对场景进行辨识。为此,提出一种计及源荷双侧的极端场景辨识方... 为应对极端天气事件给新型电力系统安全稳定运行带来的影响,在电网的生产模拟中需要考虑极端场景。然而极端场景历史样本数量少,传统场景生成方法无法直接生成极端场景,需要对场景进行辨识。为此,提出一种计及源荷双侧的极端场景辨识方法。首先,将风电、光伏和负荷序列进行重塑,并在通道维度上拼接;然后,基于分组卷积和深度残差网络,提取场景的时序特征和源荷场景之间的耦合特征;其次,模型内部嵌入通道注意力机制和多头注意力机制,以赋予重要特征更大的权重,并对场景进行分类;此外,采用改进损失函数解决训练样本中数据集不均衡的问题;最后,基于历史数据集进行验证。验证结果表明,所提方法能够对场景进行有效的分类,可以从历史场景中识别出具有高保供或高消纳风险的源荷极端场景。 展开更多
关键词 极端场景辨识 残差神经网络 分组卷积 注意力机制 源荷不确定性
在线阅读 下载PDF
融合时空注意力机制的多尺度卷积车辆轨迹预测 被引量:1
2
作者 闫建红 刘芝妍 王震 《计算机工程》 北大核心 2025年第8期406-414,共9页
车辆轨迹预测是自动驾驶的重要环节,提升车辆轨迹预测的可靠性和准确性对自动驾驶安全性有很大帮助。道路上车辆行驶受交通环境影响,考虑相邻车辆运动和相对空间位置等交通环境因素,在长短期记忆(LSTM)神经网络编码器-解码器模型基础上... 车辆轨迹预测是自动驾驶的重要环节,提升车辆轨迹预测的可靠性和准确性对自动驾驶安全性有很大帮助。道路上车辆行驶受交通环境影响,考虑相邻车辆运动和相对空间位置等交通环境因素,在长短期记忆(LSTM)神经网络编码器-解码器模型基础上引入时空注意力机制,通过时间注意力层关注目标车辆和相邻车辆的历史轨迹,空间注意力层关注车辆的相对空间位置。为了增强特征提取程度和实现更全面的特征融合,使用多尺度卷积社交池增大感受野,融合多尺度特征,并提出基于LSTM编码器-解码器架构融合多尺度卷积社交池和时空注意力机制的车辆轨迹预测模型MCS-STA-LSTM。通过学习车辆运动相互依赖关系,以达到获得目标车辆未来轨迹基于机动类别的多模态预测分布的目的。在公开数据集NGSIM上进行训练、验证和测试,实验结果表明,相较于其他轨迹预测模型,该方法在3 s内的均方根误差平均降低了9.35%,5 s内均方根误差平均降低了5.53%,提高了轨迹预测准确性,在中短期预测上更具有优势。 展开更多
关键词 多尺度卷积社交池化 轨迹预测 长短期记忆神经网络 时空注意力机制 多尺度特征融合
在线阅读 下载PDF
融合深度残差网络与注意力机制的驾驶人行为检测方法研究
3
作者 陈运星 崔军华 +2 位作者 吴钊 吴华伟 袁星宇 《重庆理工大学学报(自然科学)》 北大核心 2025年第3期34-42,共9页
为提高驾驶人行为检测的准确性及模型的可解释性,提出了一种融合深度残差网络与注意力机制的驾驶人行为检测模型。利用深度残差网络提取特征模块的优势,对比不同层数的网络模型结果,选取合适的网络模型作为基础网络;为剔除无用信息对驾... 为提高驾驶人行为检测的准确性及模型的可解释性,提出了一种融合深度残差网络与注意力机制的驾驶人行为检测模型。利用深度残差网络提取特征模块的优势,对比不同层数的网络模型结果,选取合适的网络模型作为基础网络;为剔除无用信息对驾驶行为的干扰,引入SE Block注意力机制并对图像进行特征提取和分类预测;通过与其他模型的对比试验、消融试验和特征可视化试验验证所提出模型的性能。结果表明:与其他检测模型相比,所提出模型的平均分类准确率为99.89%,其展现出更优的性能;采用Grad-CAM可视化方法解释模型的关注区域,所提出模型更精准地关注对驾驶行为判定的关键特征,进一步增强了本模型的可解释性,提高了人们对驾驶行为检测模型的信任性。 展开更多
关键词 深度学习 驾驶人行为检测 深度残差网络 注意力机制 神经网络可视化
在线阅读 下载PDF
融合注意力机制的多视图卷积网络癫痫智能辅助检测
4
作者 李奇 闫旭荣 +3 位作者 武岩 赵迪 常立娜 孙瀚琳 《科学技术与工程》 北大核心 2025年第5期1988-1995,共8页
针对单一视图网络癫痫检测识别精度低的问题,提出一种融合注意力机制的多视图卷积网络癫痫智能辅助检测模型(multi-view convolutional network with fused attention mechanism,FAM-MCNN)。该模型从时域、频域、时频域和非线性域提取... 针对单一视图网络癫痫检测识别精度低的问题,提出一种融合注意力机制的多视图卷积网络癫痫智能辅助检测模型(multi-view convolutional network with fused attention mechanism,FAM-MCNN)。该模型从时域、频域、时频域和非线性域提取多视图特征来全面表征脑电信号;采用多尺度卷积捕捉不同层次的细节信息;引入注意力机制分别从视图维度和单个特征向量维度对特征进行加权融合,从而提高对癫痫患者不同类别脑电信号的区分能力。在CHB-MIT癫痫数据集上进行的对比实验结果显示,与单一视图网络相比,FAM-MCNN模型的平均准确率、灵敏度、特异度分别提高了14.29%、16.13%、12.54%。此外,对该模型采用少量训练样本(25%)进行实验,结果显示其检测性能达到了拥有大量训练样本(80%~90%)的对比模型水平。 展开更多
关键词 脑电信号 多视图卷积 注意力机制 癫痫智能辅助检测
在线阅读 下载PDF
结合倒残差自注意力机制的遥感图像目标检测
5
作者 赵文清 赵振寰 巩佳潇 《智能系统学报》 北大核心 2025年第1期64-72,共9页
针对遥感图像目标检测存在背景信息干扰严重、待检测目标尺寸差异大等问题,提出一种结合倒残差自注意力机制的目标检测方法。首先,使用具有强特征提取能力的倒残差自注意力机制骨干网络充分提取目标特征,降低复杂背景信息的干扰;其次,... 针对遥感图像目标检测存在背景信息干扰严重、待检测目标尺寸差异大等问题,提出一种结合倒残差自注意力机制的目标检测方法。首先,使用具有强特征提取能力的倒残差自注意力机制骨干网络充分提取目标特征,降低复杂背景信息的干扰;其次,构造多尺度空间金字塔池化模块,提供多尺度感受野,增强捕捉不同尺寸目标的能力;最后,提出轻量级特征融合模块,对骨干网络提取的特征图进行融合,充分结合低层与高层特征,提高网络对不同尺寸目标的检测能力。与传统网络及其他改进目标检测算法进行对比,实验发现该方法的检测精度明显优于其他算法。此外,在DIOR数据集和RSOD数据集上设计消融实验,结果表明,该方法在DIOR数据集与RSOD数据集上的平均精度均值比YOLOv8算法分别提升4.6和4.2百分点,明显提升遥感图像目标检测的精度。 展开更多
关键词 遥感图像 目标检测 残差 自注意力机制 多尺度 空间金字塔 特征提取 特征融合
在线阅读 下载PDF
基于改进时域卷积网络与多头自注意力机制的间歇过程质量预测模型
6
作者 赵小强 柳勇勇 +1 位作者 惠永永 刘凯 《计算机应用》 北大核心 2025年第7期2245-2252,共8页
为提高时域卷积网络(TCN)在批量大小变化时的训练稳定性,并解决间歇过程质量预测在捕捉长期依赖性和全局关联性上存在不足而导致的预测准确度不高的问题,提出一种基于批量组规范化(BGN)和Mish激活函数改进残差结构的TCN(BMTCN)与多头自... 为提高时域卷积网络(TCN)在批量大小变化时的训练稳定性,并解决间歇过程质量预测在捕捉长期依赖性和全局关联性上存在不足而导致的预测准确度不高的问题,提出一种基于批量组规范化(BGN)和Mish激活函数改进残差结构的TCN(BMTCN)与多头自注意力机制(MHSA)的间歇过程质量预测模型(BMTCN-MHSA)。首先,将间歇过程的三维数据展开为二维矩阵形式,并对数据进行归一化处理,再引入奇异谱分析法(SSA)分解重构数据;其次,在时域卷积的残差部分融入BGN以降低网络模型在批量大小变化时的敏感度,引入Mish激活函数以提高模型的泛化能力,并利用多头自注意力机制对序列中不同位置的特征信息进行关联和权重分配,从而进一步提取序列中的关键特征信息和相互依赖关系,进而更好地捕捉间歇过程的动态特征;最后,使用青霉素仿真实验数据进行实验验证。实验结果表明,相较于TCN模型,BMTCN-MHSA模型的平均绝对误差(MAE)降低了56.86%,均方误差(MSE)降低了48.80%,而决定系数(R2)达到了99.48%,这表明BMTCN-MHSA模型提高了间歇过程质量预测的准确性。 展开更多
关键词 间歇过程 质量预测 奇异谱分析法 时域卷积网络 多头自注意力机制
在线阅读 下载PDF
融合注意力机制与贝叶斯优化卷积网络的机场无人机检测
7
作者 张伟 常本强 +2 位作者 杨旭 杨雪 张添龙 《安全与环境学报》 北大核心 2025年第7期2633-2642,共10页
声学探测技术可用于机场“黑飞”无人机监测,但易受复杂环境中的噪声影响。为解决这一问题,提出了一种融合卷积块注意力机制及贝叶斯优化卷积神经网络(Convolutional Block Attention Module-Bayesian Optimization-Convolutional Neura... 声学探测技术可用于机场“黑飞”无人机监测,但易受复杂环境中的噪声影响。为解决这一问题,提出了一种融合卷积块注意力机制及贝叶斯优化卷积神经网络(Convolutional Block Attention Module-Bayesian Optimization-Convolutional Neural Network, CBAM-BO-CNN)的机场无人机声学信号检测模型。该模型通过引入CBAM模块,对输入的数据从通道和空间两个独立的维度依次提取特征以增强网络对无人机梅尔频谱图的特征提取能力,并采用贝叶斯优化算法搜寻网络模型的最优超参数组合。经数据集验证,该模型实现了98.8%的识别准确率,且在低信噪比条件下仍能保持高于94%的准确率。后通过自主搭建简易的16阵元麦克风阵列,采集了60个不同方位的无人机音频数据用以验证模型的实用性。试验结果表明,应用CBAM-BO-CNN检测模型的声学监测设备在100 m范围内对无人机信号的识别准确率达94%。所提出的无人机声学信号检测模型可应对机场日益严重的无人机入侵问题,为机场安全运营提供强有力的技术支持。 展开更多
关键词 安全工程 无人机检测 声学探测 卷积注意力机制 贝叶斯优化
在线阅读 下载PDF
基于注意力机制的双卷积图像去噪网络
8
作者 周先春 吕梦楠 +3 位作者 芮旸 唐彬鑫 杜志亭 陈玉泽 《电子测量与仪器学报》 北大核心 2025年第2期60-71,共12页
近年来,深度卷积神经网络在图像去噪领域表现出了优越的性能。然而,深度网络结构往往伴随着大量的模型参数,导致训练成本高,推理时间长,限制了其在实际去噪任务中的应用。提出了一种新的基于注意力机制的双卷积图像去噪网络(MA-DFRNet)... 近年来,深度卷积神经网络在图像去噪领域表现出了优越的性能。然而,深度网络结构往往伴随着大量的模型参数,导致训练成本高,推理时间长,限制了其在实际去噪任务中的应用。提出了一种新的基于注意力机制的双卷积图像去噪网络(MA-DFRNet),它由多尺度特征特征提取网络、双卷积神经网络及动态特征精炼注意力机制组成。多尺度特征提取网络通过不同尺度的卷积获取图像特征,提高灵活性。双卷积神经网络上下分支均采用跳跃连接及扩张卷积来增大感受野。动态特征精炼注意力机制增强特征表示的精度和区分能力。这种结构设计不仅扩大了感受野,还更有效地提取和融合图像特征,显著提升去噪效果。研究结果表明,与最先进的模型相比,提出的MA-DFRNet在所有对比的噪声水平下具有更高的峰值信噪比(PSNR)和结构相似性(SSIM)值,PSNR提高了0.2 dB左右,SSIM提高了1%左右,对于噪声水平较高的图像更具鲁棒性,并且在视觉上更好地保留了图像细节,实现去噪和细节保留之间的平衡。 展开更多
关键词 图像去噪 卷积神经网络 注意力机制 跳跃连接 多尺度特征提取网络
在线阅读 下载PDF
基于注意力机制和空洞卷积的无人机图像目标检测 被引量:1
9
作者 赖勤波 马正华 朱蓉 《计算机应用与软件》 北大核心 2025年第2期227-235,共9页
针对现有无人机图像目标检测算法存在小目标检测精度低、多尺度目标漏检等问题,提出一种基于通道注意力机制和并行结构空洞卷积特征融合的无人机图像目标检测算法。该算法在ResNet50特征提取网络中引入SENet和PSDCFFN,从通道和感受野两... 针对现有无人机图像目标检测算法存在小目标检测精度低、多尺度目标漏检等问题,提出一种基于通道注意力机制和并行结构空洞卷积特征融合的无人机图像目标检测算法。该算法在ResNet50特征提取网络中引入SENet和PSDCFFN,从通道和感受野两个层面提高算法的特征表达能力,并使用ROI Align代替ROI Pooling,基于K-Means重新设计RPN(Region Proposal Networks)锚框尺寸,减小目标回归过程的坐标偏差。实验表明,该算法能够提升无人机图像目标检测精度,在RSOD-Dataset和无人机图像数据集上,mAP分别达到92.52%和98.07%。 展开更多
关键词 无人机图像 FASTER R-CNN 注意力机制 空洞卷积 特征融合 目标检测
在线阅读 下载PDF
基于残差神经网络和注意力机制的加工表面粗糙度识别 被引量:1
10
作者 范立想 朱钰浩 +2 位作者 陈书涵 姚继开 唐伟东 《机床与液压》 北大核心 2025年第11期126-132,共7页
表面粗糙度是衡量表面质量的重要指标之一,因此,开发能够快速、准确测量和识别表面粗糙度的技术具有广泛的应用前景。基于此,提出一种基于残差神经网络和注意力机制的电火花加工表面粗糙度检测技术。该技术首先对输入图像进行预处理,使... 表面粗糙度是衡量表面质量的重要指标之一,因此,开发能够快速、准确测量和识别表面粗糙度的技术具有广泛的应用前景。基于此,提出一种基于残差神经网络和注意力机制的电火花加工表面粗糙度检测技术。该技术首先对输入图像进行预处理,使用图像灰度处理降低原始信号的输入量。通过图像分块、噪声、旋转和翻转等方式进行数据增强,将增强后的数据输入深度学习模型中进行训练。深度学习模型利用残差神经网络和注意力机制,自动提取经电火花加工后的H13钢材料表面粗糙度的特征。实验结果表明:所提出的基于残差神经网络和注意力机制的表面粗糙度检测技术能够进行高效率的表面粗糙度检测;在12组粗糙度分类识别实验中,该深度学习模型相较于卷积神经网络(CNN),卷积神经网络和注意力机制(CNN-Attention)以及残差神经网络(ResNet)的准确率分别提高了9.10%、3.73%、4.11%;通过对加工后表面粗糙度图像进行4组分类,所提出模型验证准确率在95%以上,可用于工业生产及其他相关领域表面质量的快速检测。 展开更多
关键词 表面粗糙度识别 残差神经网络 注意力机制 电火花加工技术
在线阅读 下载PDF
融合动态卷积和注意力机制的多层感知机语音情感识别 被引量:1
11
作者 张雨萌 张欣 +1 位作者 高谋 赵虎林 《计算机科学与探索》 北大核心 2025年第4期1065-1075,共11页
语音情感识别技术通过分析语音信号推断说话者情绪,增强人机交互的自然性和智能性。然而,现有模型往往忽视时频语义信息,影响识别准确性。为此,提出了一种融合动态卷积与注意力机制的多层感知机模型,显著提高了情感识别的准确度及信息... 语音情感识别技术通过分析语音信号推断说话者情绪,增强人机交互的自然性和智能性。然而,现有模型往往忽视时频语义信息,影响识别准确性。为此,提出了一种融合动态卷积与注意力机制的多层感知机模型,显著提高了情感识别的准确度及信息利用效率。将输入的语音信号转化为梅尔频谱图,捕捉信号细节变化,更贴切地反映人类对声音的感知,为后续特征提取奠定了基础。通过词元化处理将梅尔频谱图转化为词元,降低了数据的复杂性。借助动态卷积与分离注意力机制高效提取关键的时频特征。一方面,动态卷积能够适应不同时间和频率上的尺度变化,优化了特征捕捉效率;另一方面,分离注意力机制增强了模型对关键信息的聚焦能力,有效提升了模型对特征的表达能力。结合动态卷积与分离注意力机制的优势,该模型能够更加充分地提取关键声学特征,从而实现了更高效、更精准的情感识别。在RAVDESS、EmoDB和CASIA三个语音情感数据库上的测试显示,模型识别准确率显著优于现有技术,达到86.11%、95.33%和82.92%。这验证了模型在复杂情感识别任务的高效性和准确性,以及动态卷积和注意力机制的有效性。 展开更多
关键词 语音情感识别 梅尔频谱图 多层感知机 动态卷积 注意力机制
在线阅读 下载PDF
融合卷积神经网络和注意力机制的负荷识别方法 被引量:2
12
作者 赵毅涛 李钊 +3 位作者 刘兴龙 骆钊 王钢 沈鑫 《电力工程技术》 北大核心 2025年第1期227-235,共9页
对居民住宅进行非侵入式负荷监测(non-intrusive load monitoring,NILM)是智能电网用户需求侧的重要研究内容,居民负荷的能耗分析和用电管理是实现节能减排、可持续发展的关键环节。针对传统算法识别性能差、难以适应当下复杂用电环境... 对居民住宅进行非侵入式负荷监测(non-intrusive load monitoring,NILM)是智能电网用户需求侧的重要研究内容,居民负荷的能耗分析和用电管理是实现节能减排、可持续发展的关键环节。针对传统算法识别性能差、难以适应当下复杂用电环境的问题,文中从增强分类算法特征提取性能的优化思路出发,提出融合卷积神经网络(convolutional neural network,CNN)和自注意力机制的NILM负荷识别方法。首先,采集8种不同家用电器的电力数据,建立U-I轨迹曲线数据库;其次,采用挤压-激励网络(squeeze-and-excitation network,SENet)注意力机制提升CNN的特征聚合能力,完成对不同电器U-I轨迹曲线的特征提取和负荷识别;最后,对私有数据集和PLAID数据集进行测试,算例结果表明,所提方法在不同运行场景下均具有较高的识别准确率和较好的泛化性能。 展开更多
关键词 非侵入式负荷监测(NILM) 负荷识别 卷积神经网络(CNN) 挤压-激励网络(SENet) 注意力机制 特征提取 U-I轨迹
在线阅读 下载PDF
基于注意力机制与残差结构的联合调制识别
13
作者 郑向阳 王忠勇 +3 位作者 杨晨旭 陈家伟 巩克现 王玮 《计算机应用与软件》 北大核心 2025年第10期163-170,共8页
针对多种信号调制类型识别,提出一种信号调制类型联合结构识别分类器,对接收信号二值化分类并分别输入两种网络进行自动识别。在高信噪比区间,利用深度可分离卷积引入跳跃连接方法叠加残差结构,同时添加多头自注意力机制代替部分卷积,... 针对多种信号调制类型识别,提出一种信号调制类型联合结构识别分类器,对接收信号二值化分类并分别输入两种网络进行自动识别。在高信噪比区间,利用深度可分离卷积引入跳跃连接方法叠加残差结构,同时添加多头自注意力机制代替部分卷积,获得优于以上两种机制的性能;在低信噪比区间,利用Transformer的自注意力机制判断输入序列不同区域的重要性,提取更加有效的特征信息。通过公开数据集的数据实验,验证了联合结构的识别有效性,低信噪比区间的识别准确率得到显著提高,高信噪比区间识别率得到进一步提升的同时,验证得到所提算法具有相对较低的复杂度。 展开更多
关键词 自动调制分类 卷积神经网络 多头自注意力机制 深度可分离卷积 全局深度卷积
在线阅读 下载PDF
DR_YOLOv8s++:改进卷积注意力机制和损失函数的SAR影像船舰目标检测网络
14
作者 杨明秋 陈国坤 +1 位作者 董燕 左小清 《遥感信息》 北大核心 2025年第2期159-168,共10页
针对目前SAR影像船舰目标检测方法存在多场景下检测精度不高、漏检、模型泛化能力差的问题,尝试以YOLOv8s网络为基础,提出新的注意力机制D-CBAM,并定义新的损失函数RIoU,以及将最新的可变形卷积DCNv4替换标准卷积,引入融合空间金字塔池... 针对目前SAR影像船舰目标检测方法存在多场景下检测精度不高、漏检、模型泛化能力差的问题,尝试以YOLOv8s网络为基础,提出新的注意力机制D-CBAM,并定义新的损失函数RIoU,以及将最新的可变形卷积DCNv4替换标准卷积,引入融合空间金字塔池化focal modulation networks来提升网络性能,提出的网络命名为DR_YOLOv8s++检测网络。为验证DR_YOLOv8s++网络的有效性和通用性,在SSDD、HRSID数据集上进行实验。结果表明,所提出算法的平均精度均值分别达到98%、97.5%,优于其他经典算法,模型性能提升明显,同其他目标检测算法相比,具有较强的泛化能力。 展开更多
关键词 船舰目标检测 SAR影像 注意力机制 可变形卷积 融合空间金字塔池化 损失函数
在线阅读 下载PDF
基于最小平均复合熵和并行卷积融合注意力机制轴承故障诊断模型
15
作者 张震 杨世锡 +1 位作者 何俊 周万春 《振动与冲击》 北大核心 2025年第18期252-262,共11页
针对复杂噪声影响下,轴承故障诊断中出现的故诊断准确率低,泛化能力弱的问题。提出基于最小平均复合熵和并行卷积融合注意力机制卷积神经网络轴承故障诊断模型。gai首先以雷尼熵和样本熵组成的最小平均复合熵作为适应度函数,以改进蜣螂... 针对复杂噪声影响下,轴承故障诊断中出现的故诊断准确率低,泛化能力弱的问题。提出基于最小平均复合熵和并行卷积融合注意力机制卷积神经网络轴承故障诊断模型。gai首先以雷尼熵和样本熵组成的最小平均复合熵作为适应度函数,以改进蜣螂算法作为优化算法对变化模态分解关键参数进行寻优,实现信号故障特征提取。随后将所提取信号特征以格拉姆角场转化为角和场和角差场。最后使用并行融合注意力机制卷积神经网络进行故障诊断。试验数据和台架试验结果表明,所提模型分类准确率高达99.3%,与对比模型相比,复杂噪声工况下的抗噪能力提高15%以上,泛化能力提高3.68%。 展开更多
关键词 雷尼熵 融合注意力机制 并行卷积神经网络 滚动轴承 格拉姆角场
在线阅读 下载PDF
融合注意力机制的深度残差网络在一维大地电磁反演中的应用
16
作者 封常青 李予国 +1 位作者 杜志俊 李盼 《地球物理学报》 北大核心 2025年第6期2390-2403,共14页
传统的线性反演方法在面对复杂地质情况时,往往受到初始模型选择的限制,容易陷入局部极值而导致反演结果不准确.相比之下,深度学习算法具有强大的非线性拟合能力,在电磁数据反演中具有巨大的应用潜力.本文融合了注意力机制的深度残差卷... 传统的线性反演方法在面对复杂地质情况时,往往受到初始模型选择的限制,容易陷入局部极值而导致反演结果不准确.相比之下,深度学习算法具有强大的非线性拟合能力,在电磁数据反演中具有巨大的应用潜力.本文融合了注意力机制的深度残差卷积网络(ADRN)应用于一维大地电磁反演中,经过训练得到了大地电磁数据空间至模型空间的非线性映射关系.提出了一种构建大地电磁复杂地电模型数据集的方法,通过引入控制层并改变其分布位置和电阻率值,再结合临近插值算法得到完整的模型地电参数.仿真数据反演结果表明,ADRN能够实现大地电磁数据快速反演并获得相对准确的反演结果.此外,为了在实测数据反演中获得最佳的预测结果,通过向网络输入层添加噪声来增强反演网络的鲁棒性.该方法在COPROD2和南黄海大地电磁实测数据反演中也展现出了较好的应用效果. 展开更多
关键词 大地电磁反演 深度学习 注意力机制 深度残差卷积网络
在线阅读 下载PDF
基于残差密集网络与注意力机制的图像降噪
17
作者 马荣恒 喻春雨 童亦新 《科学技术与工程》 北大核心 2025年第9期3795-3805,共11页
针对基于卷积神经网络图像降噪模型采用简单编码器-解码器结构而导致图像降噪性能差的问题,提出一种基于残差密集网络与注意力机制的残差密集图像降噪网络(residual dense image denoising network,RDIDNet)。首先,利用全局残差块增强... 针对基于卷积神经网络图像降噪模型采用简单编码器-解码器结构而导致图像降噪性能差的问题,提出一种基于残差密集网络与注意力机制的残差密集图像降噪网络(residual dense image denoising network,RDIDNet)。首先,利用全局残差块增强网络模型的非线性映射能力;其次,引入双元素卷积注意力模块以实现RDIDNet模型解码过程中的自适应特征融合;最后,将RDIDNet降噪模型和14种代表性降噪方法进行对比,并进行消融实验,验证在基准模型上使用RDU Sub-Network、DE-CAM、PSNRLoss进行网络优化的有效性。实验结果表明,在Set12数据集、BSD68数据集中,RDIDNet在峰值信噪比(peak signal to noise ratio,PSNR)、结构相似性(structural similarity,SSIM)指标上相比传统经典方法BM3D分别平均提高1.03 dB和0.0275;比基于Vision Transformers架构的SwinIR分别平均提高0.03 dB和0.0014;比基于CNN的最新降噪方法NHNet分别平均提高0.22 dB和0.0089。RDIDNet降噪网络更关注低频信息、模型训练更稳定,在有效消除图像噪声的同时能有效保留图像细节纹理,具有较好的表现。 展开更多
关键词 图像降噪 深度学习 残差网络 注意力机制
在线阅读 下载PDF
基于分组卷积的通道重洗注意力机制 被引量:1
18
作者 张李伟 梁泉 +1 位作者 胡禹涛 朱乔乐 《计算机应用》 北大核心 2025年第4期1069-1076,共8页
注意力机制的引入使得主干网能够学习更具区分性的特征表示。然而,为了控制注意力的复杂度,传统的注意力机制采用的通道降维或减少通道数而增加批量大小的策略会导致过度减少通道数和损失重要特征信息的问题。为解决这一问题,提出通道... 注意力机制的引入使得主干网能够学习更具区分性的特征表示。然而,为了控制注意力的复杂度,传统的注意力机制采用的通道降维或减少通道数而增加批量大小的策略会导致过度减少通道数和损失重要特征信息的问题。为解决这一问题,提出通道重洗注意力(CSA)模块。首先,利用分组卷积学习注意力权重,以控制CSA的复杂度;其次,通过传统通道重洗和深层通道重洗(DCS)方法,增强不同组间的通道特征信息交流;再次,使用逆通道重洗恢复注意力权重的顺序;最后,将恢复后的注意力权重与原始特征图相乘,以获得更具表达能力的特征图。实验结果表明,在CIFAR-100数据集上,与添加CA(Coordinate Attention)的ResNet50相比,添加CSA的ResNet50的参数量降低了2.3%,Top-1准确率提升了0.57个百分点;与添加EMA(Efficient Multi-scale Attention)的ResNet50相比,添加CSA的ResNet50的计算量降低了18.4%,Top-1准确率提升了0.27个百分点。在COCO2017数据集上,添加CSA的YOLOv5s比添加CA和EMA的YOLOv5s在平均精度均值(mAP@50)上分别提升了0.5和0.2个百分点。可见,CSA达到了参数量和计算量的平衡,并能够同时提升图像分类任务的准确率和目标检测任务的定位能力。 展开更多
关键词 注意力机制 分组卷积 通道重洗 图像分类 目标检测
在线阅读 下载PDF
基于膨胀因果卷积和注意力机制的气体识别方法
19
作者 俞凌伟 杨孟平 +1 位作者 杨海 王喆 《华东理工大学学报(自然科学版)》 北大核心 2025年第3期380-390,共11页
提出了一种基于膨胀因果卷积和注意力机制的气体识别方法,该算法结合Transformer中的注意力机制和多尺度时态卷积网络提取全局和局部特征,获得了更具表示性的特征和更大的感受野,捕获气体的瞬时信息和变化趋势。在Open Sampling、Drift... 提出了一种基于膨胀因果卷积和注意力机制的气体识别方法,该算法结合Transformer中的注意力机制和多尺度时态卷积网络提取全局和局部特征,获得了更具表示性的特征和更大的感受野,捕获气体的瞬时信息和变化趋势。在Open Sampling、Drift、Twin3个不同数据集上进行了实验,结果表明,所提出的方法分别达到99.47%、99.61%和99.22%的准确率,优于现有主流方法,证实了其有效性。 展开更多
关键词 电子鼻系统 气体识别 注意力机制 时态卷积网络 时间序列
在线阅读 下载PDF
基于多层残差注意力机制的无人机SAR图像去噪
20
作者 李忠键 张锋 +2 位作者 田进军 吴蝶 李鑫淼 《遥感信息》 北大核心 2025年第5期107-116,共10页
针对无人机SAR图像在成像过程中易产生的相干斑点噪声和运动模糊的问题,构建了一种基于多层残差注意力的无人机SAR图像去噪网络模型。该模型包括初提取网络和去噪主网络两部分,通过多尺度特征提取噪声特征和多重残差结构连接的注意力机... 针对无人机SAR图像在成像过程中易产生的相干斑点噪声和运动模糊的问题,构建了一种基于多层残差注意力的无人机SAR图像去噪网络模型。该模型包括初提取网络和去噪主网络两部分,通过多尺度特征提取噪声特征和多重残差结构连接的注意力机制优化纹理细节恢复能力。在模型训练阶段,还构建了一个反映无人机SAR图像特性的训练数据集,以增强模型对无人机SAR图像噪声的学习能力。实验结果表明,该模型在显著提高去噪效果的同时,较好地保留了图像的纹理细节。与现有模型相比,在峰值信噪比(PSNR)和结构相似性(SSIM)两个指标上,平均分别提升了1 dB和0.065,展现了其在无人机SAR图像去噪任务中的优越性。 展开更多
关键词 无人机SAR图像 注意力机制 卷积神经网络 噪点抑制 残差连接
在线阅读 下载PDF
上一页 1 2 127 下一页 到第
使用帮助 返回顶部