期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合振幅随机补偿与步长演变机制的改进原子搜索优化算法 被引量:3
1
作者 刘威 郭直清 +2 位作者 刘光伟 靳宝 王东 《智能系统学报》 CSCD 北大核心 2022年第3期602-616,共15页
针对原子优化算法寻优精度弱且易陷入局部极值的问题,本文从种群多样性、参数适应性和位置动态性角度提出一种融合混沌优化、振幅随机补偿和步长演变机制改进的原子搜索优化算法(improved atom search optimization,IASO),并将其成功应... 针对原子优化算法寻优精度弱且易陷入局部极值的问题,本文从种群多样性、参数适应性和位置动态性角度提出一种融合混沌优化、振幅随机补偿和步长演变机制改进的原子搜索优化算法(improved atom search optimization,IASO),并将其成功应用于分类任务。首先,引入帐篷映射(Tent混沌)增强原子种群在搜索空间中的分布均匀性;其次,通过构建振幅函数对算法参数进行随机扰动并加入步长演变因子更新原子位置,以增强算法全局性和收敛性;最后,再将改进算法应用于误差反馈神经网络(BP神经网络)参数优化。通过与6种元启发式算法在20个基准测试函数下的数值实验对比表明:IASO不仅在求解多维基准函数上具有好的寻优性能,且在对BP神经网络参数进行优化时相较于2种对比算法具有更高的分类精度。 展开更多
关键词 元启发式算法 原子搜索优化算法 Tent混沌优化 振幅随机补偿 步长演变机制 BP神经网络参数优化 分类 机器学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部