Positive Temperature Coefficient陶瓷热敏电阻元件,简称PTC,是五十年代后期被Aaayman等人发现,它的问世引起了人们极大的关注,它是以BaTiO_3为基础的掺杂半导体,在BaTiO_3中加入微量的掺杂物,就会具有良好的阻温特性,并在一定的温度...Positive Temperature Coefficient陶瓷热敏电阻元件,简称PTC,是五十年代后期被Aaayman等人发现,它的问世引起了人们极大的关注,它是以BaTiO_3为基础的掺杂半导体,在BaTiO_3中加入微量的掺杂物,就会具有良好的阻温特性,并在一定的温度范围内,电阻率将上升几个数量级。展开更多
分析了现有短路电流限制技术的发展现状,提出一种基于正温度系数(positive temperature coefficient,PTC)热敏电阻的可恢复型混合式短路限流装置的拓扑结构。通过将PTC热敏电阻与超快速分断开关并联,有效提高了限流装置的额定通流能力,...分析了现有短路电流限制技术的发展现状,提出一种基于正温度系数(positive temperature coefficient,PTC)热敏电阻的可恢复型混合式短路限流装置的拓扑结构。通过将PTC热敏电阻与超快速分断开关并联,有效提高了限流装置的额定通流能力,并充分利用PTC材料的电阻快速变化特性,提高装置限流能力,降低限流装置对于PTC材料额定通流要求。给出该型限流装置的检测判断原理及控制策略,分析其限流过程。完成基于PTC热敏电阻的混合式短路限流装置应用于蓄电池组电源短路限流的试验测试,通过不同设定电流值时的限流试验结果,证明所设计的装置能快速有效限制短路电流,具有良好的应用前景。展开更多
用传统的固相反应烧结法制备了(1-xmol%)BaTi03-xm01%(Bi0.5Na0.5)TiO3(BBNTx)高温无铅正温度系数电阻(positive temperature coefficient of resistivity,PTCR)陶瓷。x射线衍射表明所有的BBNTx陶瓷形成了单一的四方钙钛矿...用传统的固相反应烧结法制备了(1-xmol%)BaTi03-xm01%(Bi0.5Na0.5)TiO3(BBNTx)高温无铅正温度系数电阻(positive temperature coefficient of resistivity,PTCR)陶瓷。x射线衍射表明所有的BBNTx陶瓷形成了单一的四方钙钛矿结构。SEM分析结果显示随着BNT含量的增加,陶瓷晶粒尺寸减小。空气中烧结的0.2mol%Nb掺杂的BBNT1陶瓷,室温电阻率为~102^Ω·cm,电阻突跳为~4.5个数量级,居里温度为~150℃。氮气中烧结的0.3m01%Nb掺杂的BBNh(10≤x≤60)陶瓷,同样具有明显的PTCR效应,居里温度在180~235℃之间。随着BNT含量的增加,材料的室温电阻率增大,同时陶瓷的电阻突跳比下降。展开更多
采用还原再氧化的烧结工艺制备了0.2 mol%Y_2O_3施主掺杂的95 mol%BaTiO_3-5 mol%(Bi_(1/2)Na_(1/2))TiO_3无铅正温度系数电阻(Positive temperature coefficient of resistivity,PTCR)陶瓷。研究发现,还原气氛下烧结的样品没有明显的P...采用还原再氧化的烧结工艺制备了0.2 mol%Y_2O_3施主掺杂的95 mol%BaTiO_3-5 mol%(Bi_(1/2)Na_(1/2))TiO_3无铅正温度系数电阻(Positive temperature coefficient of resistivity,PTCR)陶瓷。研究发现,还原气氛下烧结的样品没有明显的PTCR效应,需要进一步在空气中氧化处理。其中1200℃氧化2 h的样品PTCR性能最好,电阻突跳大于3个数量级。利用交流阻抗分析方法计算了材料的晶粒、晶界电阻,发现氧化后的陶瓷晶界电阻迅速增加,而晶粒电阻基本保持不变。最后根据Heywang-Jonker理论,计算了陶瓷晶界势垒高度、势垒宽度和受主浓度。展开更多
正温度系数(positive temperature coefficient,PTC)热敏陶瓷是一类关键电子功能陶瓷,因其优异的特性在加热元件、传感器、电路保护器、温度控制器、电器消磁等领域都有广泛的应用。BaTiO_(3)作为主体材料制备的正温度系数热敏电阻(posi...正温度系数(positive temperature coefficient,PTC)热敏陶瓷是一类关键电子功能陶瓷,因其优异的特性在加热元件、传感器、电路保护器、温度控制器、电器消磁等领域都有广泛的应用。BaTiO_(3)作为主体材料制备的正温度系数热敏电阻(positive temperature coefficient thermistor,PTCR)是目前用量较大的一类正温度系数元件,具有重要的研究意义。本文阐述了正温度系数热敏材料的分类及其优缺点,介绍了正温度系数效应、热敏机理及BaTiO_(3)基正温度系数材料的半导化原理,综述了BaTiO_(3)基正温度系数热敏陶瓷国内外研究现状,分析了移峰剂、施主掺杂、受主掺杂、烧结工艺等因素对BaTiO_(3)基正温度系数热敏陶瓷的影响,总结了正温度系数热敏元器件的应用原理及其在相关领域的应用,并对正温度系数热敏陶瓷的无铅化进行了展望。展开更多
叶片覆冰会严重影响风机的安全稳定运行。目前,电热防冰是最高效可靠的风机叶片防冰方法,但存在防冰区域受热不均匀、局部覆冰以及过多分区导致防冰系统过于复杂等问题。为此提出采用正温度系数(positive temperature coefficient,PTC)...叶片覆冰会严重影响风机的安全稳定运行。目前,电热防冰是最高效可靠的风机叶片防冰方法,但存在防冰区域受热不均匀、局部覆冰以及过多分区导致防冰系统过于复杂等问题。为此提出采用正温度系数(positive temperature coefficient,PTC)材料进行风机叶片自适应电加热防冰的创新方法,通过原位聚合法成功制备了一种低居里点PTC材料,其居里温度点为1℃。随后,基于该材料的阻-温特性,建立了风机叶片的电加热防冰模型,并进行数值模拟。研究结果显示,当采用低居里点PTC材料进行风机叶片电加热防冰时,无需进行防冰区域的分区,就能使得防冰区域受热更加均匀。在一定的工作电压下,低居里点PTC材料在不同环境温度和风速下展现出自适应调节加热功率的能力,并且经过100次循环阻-温测试后,材料仍具有极强的自适应调节能力。最后,通过试验验证了材料的这种自适应调节能力。该研究结果为后续基于低居里点PTC材料的风机叶片防冰系统的研究奠定了坚实基础。展开更多
文摘Positive Temperature Coefficient陶瓷热敏电阻元件,简称PTC,是五十年代后期被Aaayman等人发现,它的问世引起了人们极大的关注,它是以BaTiO_3为基础的掺杂半导体,在BaTiO_3中加入微量的掺杂物,就会具有良好的阻温特性,并在一定的温度范围内,电阻率将上升几个数量级。
文摘分析了现有短路电流限制技术的发展现状,提出一种基于正温度系数(positive temperature coefficient,PTC)热敏电阻的可恢复型混合式短路限流装置的拓扑结构。通过将PTC热敏电阻与超快速分断开关并联,有效提高了限流装置的额定通流能力,并充分利用PTC材料的电阻快速变化特性,提高装置限流能力,降低限流装置对于PTC材料额定通流要求。给出该型限流装置的检测判断原理及控制策略,分析其限流过程。完成基于PTC热敏电阻的混合式短路限流装置应用于蓄电池组电源短路限流的试验测试,通过不同设定电流值时的限流试验结果,证明所设计的装置能快速有效限制短路电流,具有良好的应用前景。
文摘用传统的固相反应烧结法制备了(1-xmol%)BaTi03-xm01%(Bi0.5Na0.5)TiO3(BBNTx)高温无铅正温度系数电阻(positive temperature coefficient of resistivity,PTCR)陶瓷。x射线衍射表明所有的BBNTx陶瓷形成了单一的四方钙钛矿结构。SEM分析结果显示随着BNT含量的增加,陶瓷晶粒尺寸减小。空气中烧结的0.2mol%Nb掺杂的BBNT1陶瓷,室温电阻率为~102^Ω·cm,电阻突跳为~4.5个数量级,居里温度为~150℃。氮气中烧结的0.3m01%Nb掺杂的BBNh(10≤x≤60)陶瓷,同样具有明显的PTCR效应,居里温度在180~235℃之间。随着BNT含量的增加,材料的室温电阻率增大,同时陶瓷的电阻突跳比下降。
文摘采用还原再氧化的烧结工艺制备了0.2 mol%Y_2O_3施主掺杂的95 mol%BaTiO_3-5 mol%(Bi_(1/2)Na_(1/2))TiO_3无铅正温度系数电阻(Positive temperature coefficient of resistivity,PTCR)陶瓷。研究发现,还原气氛下烧结的样品没有明显的PTCR效应,需要进一步在空气中氧化处理。其中1200℃氧化2 h的样品PTCR性能最好,电阻突跳大于3个数量级。利用交流阻抗分析方法计算了材料的晶粒、晶界电阻,发现氧化后的陶瓷晶界电阻迅速增加,而晶粒电阻基本保持不变。最后根据Heywang-Jonker理论,计算了陶瓷晶界势垒高度、势垒宽度和受主浓度。
文摘正温度系数(positive temperature coefficient,PTC)热敏陶瓷是一类关键电子功能陶瓷,因其优异的特性在加热元件、传感器、电路保护器、温度控制器、电器消磁等领域都有广泛的应用。BaTiO_(3)作为主体材料制备的正温度系数热敏电阻(positive temperature coefficient thermistor,PTCR)是目前用量较大的一类正温度系数元件,具有重要的研究意义。本文阐述了正温度系数热敏材料的分类及其优缺点,介绍了正温度系数效应、热敏机理及BaTiO_(3)基正温度系数材料的半导化原理,综述了BaTiO_(3)基正温度系数热敏陶瓷国内外研究现状,分析了移峰剂、施主掺杂、受主掺杂、烧结工艺等因素对BaTiO_(3)基正温度系数热敏陶瓷的影响,总结了正温度系数热敏元器件的应用原理及其在相关领域的应用,并对正温度系数热敏陶瓷的无铅化进行了展望。
文摘叶片覆冰会严重影响风机的安全稳定运行。目前,电热防冰是最高效可靠的风机叶片防冰方法,但存在防冰区域受热不均匀、局部覆冰以及过多分区导致防冰系统过于复杂等问题。为此提出采用正温度系数(positive temperature coefficient,PTC)材料进行风机叶片自适应电加热防冰的创新方法,通过原位聚合法成功制备了一种低居里点PTC材料,其居里温度点为1℃。随后,基于该材料的阻-温特性,建立了风机叶片的电加热防冰模型,并进行数值模拟。研究结果显示,当采用低居里点PTC材料进行风机叶片电加热防冰时,无需进行防冰区域的分区,就能使得防冰区域受热更加均匀。在一定的工作电压下,低居里点PTC材料在不同环境温度和风速下展现出自适应调节加热功率的能力,并且经过100次循环阻-温测试后,材料仍具有极强的自适应调节能力。最后,通过试验验证了材料的这种自适应调节能力。该研究结果为后续基于低居里点PTC材料的风机叶片防冰系统的研究奠定了坚实基础。