期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
无碳酸乙烯酯电解液定向构筑正极电解质界面相实现高电压钴酸锂的宽温域稳定运行
1
作者 彭羽 陈嘉威 +5 位作者 殷悦 曹永杰 廖莫愁 王丛笑 董晓丽 夏永姚 《物理化学学报》 北大核心 2025年第8期103-114,共12页
提升钴酸锂(LCO)正极的充电截止电压是提高锂离子电池(LIBs)能量密度的直接策略。然而,高电压下正极-电解质界面相(CEI)的不稳定性严重制约了高能量密度LIBs的发展。因此,本研究利用无碳酸乙烯酯(EC)的电解液设计,通过构建兼具化学稳定... 提升钴酸锂(LCO)正极的充电截止电压是提高锂离子电池(LIBs)能量密度的直接策略。然而,高电压下正极-电解质界面相(CEI)的不稳定性严重制约了高能量密度LIBs的发展。因此,本研究利用无碳酸乙烯酯(EC)的电解液设计,通过构建兼具化学稳定性与机械强度的氟/硼复合CEI以提升界面稳定性。采用碳酸丙烯酯(PC)及氟代碳酸乙烯酯(FEC)作为溶剂,增强电解液的抗氧化稳定性,促进CEI中氟化锂(LiF)组分的生成,提升其机械强度。同时,引入双草酸硼酸锂(LiBOB)添加剂,在CEI中形成含硼交联聚合物(LiB_(x)O_(y))组分,以其柔性结构特征弥补LiF层的不足之处。最终,构建出具有富无机相(LiF和Li_(2)C_(2)O_(4))嵌入含硼类聚合物(LiB_(x)O_(y))基体结构的刚柔并济CEI。这种CEI其兼具结构致密性、良好的机械稳定性与电化学稳定性等优点,有效抑制高电压下LCO的界面副反应及不可逆结构退化。实验结果表明,无EC的PC基电解液使LCO正极在4.6 V高截止电压下展现出优异的电化学性能,0.5C倍率循环200次后容量保持率达82%。此外,石墨||LCO全电池在4.5 V截止电压下表现出显著提升的循环稳定性,并实现−40–80℃宽温域范围内的稳定运行,验证了该优化电解液衍生的刚柔并济CEI的有效性。本研究突破传统EC基电解液设计范式,为开发高性能、宽温域及可持续PC基电解液提供了新思路。 展开更多
关键词 高电压电解 无碳酸乙烯酯电解 添加剂 钴酸锂 正极-电解质界面
在线阅读 下载PDF
通过简单的浆料添加剂调整电极-电解液界面以实现稳定的高电压锂离子电池
2
作者 黄奥羽 许君 +6 位作者 黄玉 储圭 王卯 王黎丽 孙永奇 蒋臻 朱晓波 《物理化学学报》 北大核心 2025年第4期60-69,共10页
5 V级LiNi_(0.5)Mn_(1.5)O_(4)(LNMO)作为无钴正极材料,满足了对廉价高性能锂离子电池(LIBs)日益增长的需求。然而,由于高工作电位,LNMO在与商用电解液的界面上存在不稳定性问题。本文提出使用硅酸四乙酯作为LNMO正极浆料添加剂。这种... 5 V级LiNi_(0.5)Mn_(1.5)O_(4)(LNMO)作为无钴正极材料,满足了对廉价高性能锂离子电池(LIBs)日益增长的需求。然而,由于高工作电位,LNMO在与商用电解液的界面上存在不稳定性问题。本文提出使用硅酸四乙酯作为LNMO正极浆料添加剂。这种简单的方法能够在电极制备过程中在正极表面原位形成乙氧基官能化的聚硅氧烷薄膜。它不仅有助于形成稳固的人工正极-电解液界面,还能清除氢氟酸(HF)以抑制有害的化学串扰影响。因此,与原始正极相比,优化后的LNMO正极在半电池中表现出显著提高的循环稳定性(1000次循环后容量保持率为84.6%vs.51.4%),在与商用石墨负极配对的全电池中也是如此(500次循环后保持率为83.3%vs.53.4%),并在50℃的高温测试环境下和软包电池中进一步得到验证,这一简单策略有望为开发下一代高性能锂离子电池铺平道路。 展开更多
关键词 LiNi_(0.5)Mn_(1.5)O_(4) 高电压 正极-电解质界面 浆料添加剂 过渡金属溶解 锂离子电池
在线阅读 下载PDF
三元NCM锂离子电池高电压电解质的研究进展 被引量:5
3
作者 毛舒岚 武倩 +1 位作者 王卓雅 陆盈盈 《储能科学与技术》 CAS CSCD 2020年第2期538-550,共13页
层状三元材料LiNixCoyMn1-x-yO2(以下简称NCM)具有较高的比容量和工作电压平台及良好的倍率性能,在电动汽车领域占据重要地位。为满足电动汽车续航里程的需求,提高工作电压被视为提升三元锂离子电池能量密度的一种有效手段。然而现存电... 层状三元材料LiNixCoyMn1-x-yO2(以下简称NCM)具有较高的比容量和工作电压平台及良好的倍率性能,在电动汽车领域占据重要地位。为满足电动汽车续航里程的需求,提高工作电压被视为提升三元锂离子电池能量密度的一种有效手段。然而现存电解液电化学窗口窄,无法实现高电压下的稳定循环。本综述对高工作电压下的NCM电池电解质进行探讨,从电解液在高工作电压下分解相关的前线轨道理论及电极与电解液界面反应出发,指出了提高三元正极材料锂离子电池高压工作性能的关键,总结了近年来高工作电压下三元正极材料锂离子电池非水系电解质在溶剂、锂盐、添加剂等方面的设计进展以及固态电解质和离子液体在高工作电压下NCM电池中的应用。最后对电解液在高工作电压下的实际应用提出改进方案,对未来固态电解质的发展趋势提出展望。 展开更多
关键词 锂离子电池 --锰三元正极材料 高电压电解质 正极-电解质界面
在线阅读 下载PDF
NaPO_(2)F_(2) additive to regulate robust electrode/electrolyte interphases for high-voltage sodium-ion batteries
4
作者 LING Zhao-hong ZHU Jue +1 位作者 CAO Xin-xin LIANG Shu-quan 《Journal of Central South University》 CSCD 2024年第12期4483-4496,共14页
High-voltage sodium-ion batteries(SIBs)are emerging as promising candidates for large-scale energy storage systems due to their abundant sodium source and high energy density.However,the instability of the electrode e... High-voltage sodium-ion batteries(SIBs)are emerging as promising candidates for large-scale energy storage systems due to their abundant sodium source and high energy density.However,the instability of the electrode electrolyte interphase remains a critical barrier to the potential use of high-voltage SIBs.Herein,sodium difluorophosphate(NaDFP)and fluoroethylene carbonate(FEC)serve as functional electrolyte additives to stabilize the interface of the high-voltage cathode.The oxidative competition between FEC and NaDFP facilitates the robust formation of the cathode-electrolyte interface(CEI)layer,enriched with inorganic components such as NaF/NaPO_(x)F_(y).The highly conductive NaF/NaPO_(x)F_(y)and inorganics provide fast ion transport pathways and mechanical strength,thereby mitigating the decomposition of carbonates and NaPF_(6).The half-cell equipped with BE 2 F+0.5 DFP demonstrates 93.9%capacity retention at 4.3 V across 600 cycles,showcasing excellent cycling capability.Full HC||NVOPF cells exhibit sustained performance with 91.69%capacity retention and a capacity of 91.57 mA·h/g over 1000 cycles at a 5 C rate.This study is poised to garner increased scholarly interest in the domain of rational electrolyte formulation for practical applications. 展开更多
关键词 sodium-ion battery sodium difluorophosphate functional electrolyte cathode electrolyte interface high voltage performance
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部