期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于新型间谍技术的半监督自训练正例无标记学习 被引量:2
1
作者 李婷婷 吕佳 范伟亚 《计算机应用》 CSCD 北大核心 2019年第10期2822-2828,共7页
正例无标记(PU)学习中的间谍技术极易受噪声和离群点干扰,导致划分的可靠正例不纯,且在初始正例中随机选择间谍样本的机制极易造成划分可靠负例时效率低下,针对这些问题提出一种结合新型间谍技术和半监督自训练的PU学习框架。首先,该框... 正例无标记(PU)学习中的间谍技术极易受噪声和离群点干扰,导致划分的可靠正例不纯,且在初始正例中随机选择间谍样本的机制极易造成划分可靠负例时效率低下,针对这些问题提出一种结合新型间谍技术和半监督自训练的PU学习框架。首先,该框架对初始有标记样本进行聚类并选取离聚类中心较近的样本来取代间谍样本,这些样本能有效地映射出无标记样本的分布结构,从而更好地辅助选取可靠负例;然后对间谍技术划分后的可靠正例进行自训练提纯,采用二次训练的方式取回被误分为正例样本的可靠负例。该框架有效地解决了传统间谍技术在PU学习中分类效率易受数据分布干扰以及随机间谍样本影响的问题。通过9个标准数据集上的仿真实验结果表明,所提框架的平均分类准确率和F-值均高于基本PU学习算法(Basic_PU)、基于间谍技术的PU学习算法(SPY)、基于朴素贝叶斯的自训练PU学习算法(NBST)和基于迭代剪枝的PU学习算法(Pruning)。 展开更多
关键词 无标记学习 间谍技术 半监督自训练 聚类 可靠负例 可靠
在线阅读 下载PDF
面向社交媒体的高质量内容识别 被引量:2
2
作者 赵泉 胡骏 +2 位作者 方全 钱胜胜 徐常胜 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2020年第6期943-949,共7页
如何从海量多媒体文章中自动识别高质量内容是信息推荐、搜索引擎等系统的核心功能之一.现有的方法在训练中依赖大量的人工标注数据.针对其未考虑社交媒体中的社交信息和视觉内容的问题,提出一种基于正无标记(positive and unlabeled, ... 如何从海量多媒体文章中自动识别高质量内容是信息推荐、搜索引擎等系统的核心功能之一.现有的方法在训练中依赖大量的人工标注数据.针对其未考虑社交媒体中的社交信息和视觉内容的问题,提出一种基于正无标记(positive and unlabeled, PU)学习的图卷积高质量文章内容识别模型--基于PU学习的图卷积网络(graph convolutional network based on positive and unlabeled learning, GCN-PU),在统一的框架中使用一个异构网络同时建模社交媒体文章的文本和社交信息,并在该网络上使用图卷积网络来融合这些信息得到高阶特征.另外,使用多媒体文章的全局视觉布局信息来捕捉文章的综合视觉质量特征,用于补充图卷积网络输出的高阶特征.最后,在训练机制和损失函数中引入了PU学习来充分利用社交媒体中大量未标注的文章信息.在真实社交媒体数据集上的实验结果表明,相比于现有的方法, GCN-PU方法的F值提升了3%以上. 展开更多
关键词 社交媒体 多媒体文章 质量识别 正无标记学习 图卷积网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部