期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
改进的正弦辅助多元经验模式分解及其在滚动轴承故障诊断中的应用 被引量:5
1
作者 吴利锋 吕勇 +2 位作者 袁锐 朱熹 游俊 《中国机械工程》 EI CAS CSCD 北大核心 2022年第11期1336-1344,共9页
正弦辅助多元经验模式分解算法(SA-MEMD)通过在额外的通道中加入正弦辅助信号来减少模式混合,但该算法对噪声敏感,辅助信号的主频率比需要根据经验确定,为此,提出了一种改进的正弦辅助多元经验模式分解算法。首先使用非局部均值降噪对... 正弦辅助多元经验模式分解算法(SA-MEMD)通过在额外的通道中加入正弦辅助信号来减少模式混合,但该算法对噪声敏感,辅助信号的主频率比需要根据经验确定,为此,提出了一种改进的正弦辅助多元经验模式分解算法。首先使用非局部均值降噪对原始信号进行预处理,减少噪声对算法的干扰,其次使用短时傅里叶变换确定信号频谱范围,然后以最小集成EMD能量熵准则选择最优主频率比,最后根据正弦辅助多元经验模式分解算法的步骤进行信号处理。模拟信号和实际信号的对比分析结果证明,改进的方法可以减少传统的多元经验模式分解方法存在的模式混合现象。 展开更多
关键词 故障诊断 正弦辅助多元经验模式分解 模式混合 短时傅里叶变换 能量熵
在线阅读 下载PDF
基于噪声辅助多元经验模态分解和多尺度形态学的滚动轴承故障诊断方法 被引量:17
2
作者 武哲 杨绍普 +2 位作者 任彬 马新娜 张建超 《振动与冲击》 EI CSCD 北大核心 2016年第4期127-133,共7页
为了从强噪背景中提取滚动轴承微弱故障特征,提出一种基于噪声辅助多元经验模态分解(Noise Assisted Multivariate Empirical Mode Decomposition,NAMEMD)和数学形态学的滚动轴承故障诊断方法。NAMEMD是新提出的一种基于噪声辅助数据分... 为了从强噪背景中提取滚动轴承微弱故障特征,提出一种基于噪声辅助多元经验模态分解(Noise Assisted Multivariate Empirical Mode Decomposition,NAMEMD)和数学形态学的滚动轴承故障诊断方法。NAMEMD是新提出的一种基于噪声辅助数据分析方法,其克服了集成经验模态分解的模态混淆和运算量大等问题。将NAMEMD与多尺度形态学相结合应用于滚动轴承故障诊断。该方法首先利用NAMEMD将多分量调频调幅故障信号自适应分解为一系列IMF分量;其次,选取能量高的IMF分量求和重构;最后利用多尺度形态学差值滤波器提取信号的故障特征频率。为了验证理论的正确性,进行了仿真试验和轴承故障试验,并与EEMD和包络解调进行了比较,结果表明该方法在进一步降低模态混叠效应的同时,明显提高了运算速度,对滚动轴承外圈、内圈和滚子故障的检测精度更高,能够清晰地提取出故障信号的故障特征频率。 展开更多
关键词 噪声辅助多元经验模态分解 模态混叠 多尺度形态学 滚动轴承 故障诊断
在线阅读 下载PDF
基于谱峭度和多元经验模式分解的机械故障诊断 被引量:4
3
作者 张兵 于淑静 董绍江 《制造技术与机床》 北大核心 2015年第6期97-101,共5页
研究基于谱峭度和多元经验模式分解(multivariate empirical mode decomposition,MEMD)的机械故障诊断模型,首先依据谱峭度指标对非平稳信号成分的敏感性构建自适应带通滤波器组对原信号进行滤波以提高原信号信噪比,然后运用MEMD对不同... 研究基于谱峭度和多元经验模式分解(multivariate empirical mode decomposition,MEMD)的机械故障诊断模型,首先依据谱峭度指标对非平稳信号成分的敏感性构建自适应带通滤波器组对原信号进行滤波以提高原信号信噪比,然后运用MEMD对不同状态下振动信号统一处理以获取尺度特征匹配的多元内蕴模式函数(multivariate intrinsic mode functions,MIMF),最后将从MIMF中所得能量分布特征向量输入最近邻分类器(K-nearest neighbors classifier,KNNC)中进行状态辨识。基于谱峭度和MEMD的机械故障诊断模型实现了机械故障特征增强到故障识别的全程自动化,齿轮箱应用实例验证了模型的有效性。 展开更多
关键词 故障诊断 谱峭度 多元经验模式分解 特征提取
在线阅读 下载PDF
基于多元经验模式分解的股票收益与宏观经济关系分析 被引量:4
4
作者 李成 周恒 《统计与信息论坛》 CSSCI 2013年第2期61-66,共6页
提出一种基于多元经验模式分解的股票市场收益与宏观经济活动关系的分析方法。通过月度道琼斯指数和美国工业生产指数的联合多元经验模式分解,得到多元金融时间序列的多尺度分量。采用希尔伯特—黄变换和边际谱确定每个尺度的主周期,进... 提出一种基于多元经验模式分解的股票市场收益与宏观经济活动关系的分析方法。通过月度道琼斯指数和美国工业生产指数的联合多元经验模式分解,得到多元金融时间序列的多尺度分量。采用希尔伯特—黄变换和边际谱确定每个尺度的主周期,进而在不同尺度下对多元时间序列进行相关性分析及Granger因果检验。结果表明:股票指数在中、长周期的某些尺度上是工业生产指数的Granger原因,序列之间具有明显的相关性,股票指数领先工业生产指数16个月到32个月不等。 展开更多
关键词 金融时间序列分析 股市收益 宏观经济 多元经验模式分解 相关性分析
在线阅读 下载PDF
基于辅助信号经验模式分解的海上视频图像去雾技术
5
作者 王孝通 郭珈 +2 位作者 金鑫 徐冠雷 马跃 《光电工程》 CAS CSCD 北大核心 2013年第5期64-71,共8页
海面及天空区域的视频图像局部或全局极值点匮乏,传统的二维经验模式分解(BEMD)失效。本文分析了BEMD的频率特性,给出了高频辅助信号的构造方法,将高频辅助信号加入原视频图像信号,分解得到的内蕴模式分量(IMC)减去IMC的辅助信号,得到... 海面及天空区域的视频图像局部或全局极值点匮乏,传统的二维经验模式分解(BEMD)失效。本文分析了BEMD的频率特性,给出了高频辅助信号的构造方法,将高频辅助信号加入原视频图像信号,分解得到的内蕴模式分量(IMC)减去IMC的辅助信号,得到原信号的最接近辅助信号的频率分量。以此类推,分解可得到原信号的不同频率分量。这种基于辅助信号的经验模式分解(ASBEMD),解决了局部或全局极值点匮乏的海上视频图像的分解问题,并应用于海上降质图像的增强处理,取得了与目前公认去雾效果较好的HE算法一致的结果。 展开更多
关键词 二维经验模式分解 辅助信号经验模式分解 去雾 海上图像
在线阅读 下载PDF
基于多元经验模式分解的电力系统低频振荡模式辨识 被引量:10
6
作者 苏安龙 孙志鑫 +2 位作者 何晓洋 张艳军 王长江 《电力系统保护与控制》 EI CSCD 北大核心 2019年第22期113-125,共13页
提出了一种辨识电力系统主导低频振荡模式的新方法。该方法结合了多元经验模式分解(Multivariate Empirical Mode Decomposition,MEMD)、Teager能量算子及预测误差法(Prediction Error Method,PEM),通过多元经验模式分解将含电力系统低... 提出了一种辨识电力系统主导低频振荡模式的新方法。该方法结合了多元经验模式分解(Multivariate Empirical Mode Decomposition,MEMD)、Teager能量算子及预测误差法(Prediction Error Method,PEM),通过多元经验模式分解将含电力系统低频振荡特征信息的信号进行分解,得到多个本征模函数(Intrinsic Mode Function,IMF)分量;借助Teager能量算子的快速响应能力,筛选出含有主导振荡模式的主要IMF分量;最后采用预测误差法辨识出各主导振荡模式的振荡频率和阻尼。分别利用IEEE68节点测试系统和辽宁电网实测PMU数据对所提方法进行分析、验证。结果表明,该方法可有效从电力系统的广域量测信息中辨识出电力系统的主导振荡模式。 展开更多
关键词 电力系统 低频振荡 多元经验模式分解 TEAGER能量算子 预测误差法
在线阅读 下载PDF
融合新闻影响力衰减的碳价格多元分解集成预测 被引量:1
7
作者 张大斌 黄均杰 +1 位作者 凌立文 胡焕玲 《河南科技大学学报(自然科学版)》 CAS 北大核心 2024年第1期51-61,M0005,M0006,共13页
新闻数据涵盖了与碳价格密切相关的政策、经济和能源等信息,对碳价格的影响具有时效性。为量化新闻影响力的衰减程度,基于词频统计和指数衰减对新闻数据提取特征,提出了1种新闻影响力衰减时间序列的计算方法,新闻的衰减效应更准确地反... 新闻数据涵盖了与碳价格密切相关的政策、经济和能源等信息,对碳价格的影响具有时效性。为量化新闻影响力的衰减程度,基于词频统计和指数衰减对新闻数据提取特征,提出了1种新闻影响力衰减时间序列的计算方法,新闻的衰减效应更准确地反映新闻对碳价格的影响程度。为提高预测精度,构建了融合新闻影响力衰减的碳价格多元分解集成预测模型,运用噪声辅助多元经验模态分解方法对碳价格和新闻数据进行多元分解,基于样本熵重构分量,使用机器学习方法对分量进行预测,加和集成得到预测结果。以湖北省碳价格为例进行实证分析。结果表明:新闻影响力指数衰减方法能有效刻画新闻与碳价格的相关性,多元分解集成模型表现出优异且稳定的预测性能。 展开更多
关键词 碳价格预测 新闻影响力 指数衰减 噪声辅助多元经验模态分解 样本熵
在线阅读 下载PDF
基于MEMD和HHT的电力系统低频振荡模式识别方法研究 被引量:30
8
作者 葛维春 殷祥翔 +3 位作者 葛延峰 屈超 黄鑫 王长江 《电力系统保护与控制》 EI CSCD 北大核心 2020年第6期124-135,共12页
提出了一种基于多元经验模态分解(Multivariate empirical mode decomposition,MEMD)和希尔伯特黄变换(Hilbert-Huang Transform,HHT)相结合的电力系统低频振荡模式辨识新方法。针对经验模态分解(Empirical Mode Decomposition,EMD)只... 提出了一种基于多元经验模态分解(Multivariate empirical mode decomposition,MEMD)和希尔伯特黄变换(Hilbert-Huang Transform,HHT)相结合的电力系统低频振荡模式辨识新方法。针对经验模态分解(Empirical Mode Decomposition,EMD)只适用于单通道模式辨识的局限性,以及存在模式混叠和辨识效率低的缺点,引入MEMD方法对多通道量测信号进行分解处理,获取各通道中表征不同频率尺度的固有模态函数(Intrinsic Mode Functions,IMF)分量,实现多通道量测信息的协同分解。在此基础上,引入Teager能量算子筛选出含主导振荡模式的关键IMF。针对主导振荡模式在振荡过程的时变特性,借助HHT追踪各主导振荡模式的瞬时振荡频率和阻尼比。最后,通过16机68节点测试系统仿真数据和辽宁电网PMU实测数据对所提方法进行分析、验证。结果表明了所提方法的准确性和有效性。 展开更多
关键词 低频振荡 多元经验模态分解 固有模态函数 主导振荡模式
在线阅读 下载PDF
基于NA-MEMD和互信息的脑电特征提取方法 被引量:10
9
作者 韩笑 佘青山 +1 位作者 高云园 罗志增 《传感技术学报》 CAS CSCD 北大核心 2016年第8期1140-1148,共9页
多变量经验模式分解(MEMD)方法不需要根据先验知识选取基函数,能同时对多通道数据进行自适应分解,适合于分析具有高度相关性和非平稳性的脑电信号。为了判别包含有用信息的内蕴模式函数(IMFs),提出一种基于噪声辅助多变量经验模式分解(N... 多变量经验模式分解(MEMD)方法不需要根据先验知识选取基函数,能同时对多通道数据进行自适应分解,适合于分析具有高度相关性和非平稳性的脑电信号。为了判别包含有用信息的内蕴模式函数(IMFs),提出一种基于噪声辅助多变量经验模式分解(NA-MEMD)和互信息的方法,并用于脑电特征提取。首先使用NA-MEMD算法对多通道信号进行分解得到多尺度IMF分量,然后采用互信息法分别计算各尺度上信号与其IMF分量、噪声与其IMF分量、信号IMF分量与噪声IMF分量之间的相关性,接着根据敏感因子筛选包含有用信息的IMF分量,将其叠加得到对应的重构信号,最后采用共同空间模式(CSP)法对重构信号进行特征提取,再用支持向量机(SVM)实现分类。使用仿真数据和实际数据集BCI Competition IV Data Set 1进行测试,与现有的其他方法比较,验证了所提方法的有效性。 展开更多
关键词 脑电信号 噪声辅助多变量经验模式分解 互信息 共同空间模式
在线阅读 下载PDF
基于EEMD的信号处理方法分析和实现 被引量:35
10
作者 时世晨 单佩韦 《现代电子技术》 2011年第1期88-90,94,共4页
Hilbert-Huang变换是一种具有良好自适应性,能够对非线性非平稳的信号进行分析的时频分析方法。而经验模式分解是HHT的核心部分。针对传统EMD分解带来的模态混叠问题,介绍了引入白噪声辅助分析方法的改进型算法EEMD并且通过Matlab平台... Hilbert-Huang变换是一种具有良好自适应性,能够对非线性非平稳的信号进行分析的时频分析方法。而经验模式分解是HHT的核心部分。针对传统EMD分解带来的模态混叠问题,介绍了引入白噪声辅助分析方法的改进型算法EEMD并且通过Matlab平台进行了信号仿真系统设计和实验,验证了EEMD方法的抗混分解能力。 展开更多
关键词 Hilbert—Huang变换 经验模式分解 模态混叠 噪声辅助处理
在线阅读 下载PDF
基于全矢NA-MEMD的滚动轴承故障诊断方法 被引量:4
11
作者 金兵 马艳丽 +1 位作者 李凌均 韩捷 《机床与液压》 北大核心 2017年第19期189-193,198,共6页
针对EMD分解多通道信号得到的IMF分量在数量和频率成分出现的不匹配现象和单通道分析方法存在信息利用不充分的问题,提出了一种基于噪声辅助多维经验模式分解(NA-MEMD)与全矢谱结合的滚动轴承故障诊断方法——全矢NA-MEMD。利用NA-MEMD... 针对EMD分解多通道信号得到的IMF分量在数量和频率成分出现的不匹配现象和单通道分析方法存在信息利用不充分的问题,提出了一种基于噪声辅助多维经验模式分解(NA-MEMD)与全矢谱结合的滚动轴承故障诊断方法——全矢NA-MEMD。利用NA-MEMD对同源双通道信号和噪声辅助信号构成的多通道信息自适应分解成一系列IMF分量;根据相关系数从同源双通道中选取包含故障主要信息的IMF分量进行重构;将重构信号进行全矢信息融合来提取故障特征。通过仿真信号和实验信号分析验证该方法的有效性。 展开更多
关键词 噪声辅助的多维经验模式分解 全矢谱 相关系数 信息融合
在线阅读 下载PDF
基于全矢包络融合双层降噪处理的轴承故障特征提取 被引量:2
12
作者 瞿红春 周大鹏 +1 位作者 贾柏谊 郑剑青 《噪声与振动控制》 CSCD 北大核心 2023年第1期135-140,184,共7页
针对轴承故障信号受背景噪声影响,而难以准确提取故障冲击特征的问题,提出一种噪声辅助多元经验模态分解(Noise-assisted Multivariate Empirical Mode Decomposition,NA-MEMD)与全矢包络快速独立分量分析(Fast Independent Component A... 针对轴承故障信号受背景噪声影响,而难以准确提取故障冲击特征的问题,提出一种噪声辅助多元经验模态分解(Noise-assisted Multivariate Empirical Mode Decomposition,NA-MEMD)与全矢包络快速独立分量分析(Fast Independent Component Analysis,FastICA)相结合的轴承故障特征提取方法。该方法将同源双通道信号进行NAMEMD分解,根据相关性系数选取包含故障特征的固有模态函数(Intrinsic Mode Function,IMF)进行重构;对重构信号进行快速独立分量分析,最后进行全矢包络融合,提取轴承故障特征。对实际轴承信号的分析验证该方法能有效提取完整高阶故障频率,同时降低包络谱特征统计参数的冗余。 展开更多
关键词 故障诊断 噪声辅助多元经验模态分解 快速独立分量分析 全矢包络谱 特征提取
在线阅读 下载PDF
基于CSAEMD-KECA和角结构距离的齿轮故障识别方法 被引量:1
13
作者 高庆云 郭力 陈长华 《机电工程》 CAS 北大核心 2023年第1期11-22,共12页
作为机械传动系统中的重要部件,齿轮经常运行在变转速变载荷工况下,直接采集到的齿轮故障信号(原始信号)往往存在强背景噪声。由于其原始信号中存在噪声信号,干扰了齿轮故障模式识别,且传统故障识别方法准确率较低,针对这一问题,提出了... 作为机械传动系统中的重要部件,齿轮经常运行在变转速变载荷工况下,直接采集到的齿轮故障信号(原始信号)往往存在强背景噪声。由于其原始信号中存在噪声信号,干扰了齿轮故障模式识别,且传统故障识别方法准确率较低,针对这一问题,提出了一种基于CSAEMD-KECA和角结构距离的齿轮故障识别方法。首先,使用互补正弦辅助经验模式分解(CSAEMD)方法对齿轮故障信号进行了分解重构,以去除信号中的噪声成分;然后,利用核熵成分分析(KECA)方法对CSAEMD分解重构后的信号进行了特征提取,选取了对样本(CSAEMD分解重构后的信号)瑞丽熵贡献值较大的3个特征向量,并将其作为投影向量,样本数据向投影向量投影形成了特征数据集;最后,搭建了故障模拟实验台,对上述方法的可行性进行了验证,采用角结构距离的聚类方法对特征数据集进行了聚类分析。研究结果表明:利用实验台数据进行的有效实验,能够准确地识别出齿轮的各种故障,其聚类准确率达到98.3%;该结果可验证基于CSAEMD-KECA和角结构距离的方法在齿轮故障识别上的有效性。 展开更多
关键词 机械传动系统 齿轮故障诊断 互补正弦辅助经验模式分解 核熵成分分析 聚类分析 信号分解重构 信号特征提取
在线阅读 下载PDF
基于分时段规范变量残差分析的高速自动机动态特性监测 被引量:3
14
作者 王宝祥 潘宏侠 《振动与冲击》 EI CSCD 北大核心 2019年第20期90-96,共7页
针对高速自动机运动形态的多行程特点,提出一种分时段规范变量残差分析(Phase-partitioned Canonical Variate Dissimilarity Analysis,PCVDA)方法用于高速自动机的动态特性监测。通过建立整个行程与短时瞬态冲击信号的对应关系,将冲击... 针对高速自动机运动形态的多行程特点,提出一种分时段规范变量残差分析(Phase-partitioned Canonical Variate Dissimilarity Analysis,PCVDA)方法用于高速自动机的动态特性监测。通过建立整个行程与短时瞬态冲击信号的对应关系,将冲击信号划分为多个时段;采用正弦波辅助经验模态分解(Sinusoid-assisted Empirical Mode Decomposition,SEMD)将每个时段的冲击信号分解为高频和低频成分,分别计算两种成分的过去和未来数据的规范变量的残差,建立基于高低频成分的PCVDA模型监测高速自动机在不同时段的动态特性。对某12.7 mm高速自动机的监测结果验证了PCVDA模型的有效性。 展开更多
关键词 时段划分 规范变量残差分析 正弦辅助经验模态分解 动态监测 高速自动机
在线阅读 下载PDF
全矢样本熵在高速列车故障诊断中的应用 被引量:3
15
作者 李亚兰 金炜东 《振动.测试与诊断》 EI CSCD 北大核心 2020年第4期794-799,829,830,共8页
为了有效提取高速列车转向架振动信号的故障特征以及针对单通道采集的信息难以完善地反映出列车运行状态的问题,提出了一种基于全矢样本熵(full vector sample entropy,简称FVSE)算法的故障特征提取方法。首先,使用噪声辅助多元经验模... 为了有效提取高速列车转向架振动信号的故障特征以及针对单通道采集的信息难以完善地反映出列车运行状态的问题,提出了一种基于全矢样本熵(full vector sample entropy,简称FVSE)算法的故障特征提取方法。首先,使用噪声辅助多元经验模态分解(noise assisted multivariate empirical mode decomposition,简称NAMEMD)方法对振动信号进行分解,得到一系列多元本征模态函数;其次,根据相关系数法选择与原始信号最相关的本征模态函数分别进行样本熵和全矢样本熵特征提取;最后,将得到的特征向量分别作为支持向量机的输入对列车状态进行识别。实验结果表明,采用全矢样本熵算法的故障识别率普遍比采用样本熵算法提高了6个百分点,最高达到了98%以上,验证了噪声辅助多元经验模态分解方法结合全矢样本熵算法对高速列车故障诊断的有效性。 展开更多
关键词 高速列车转向架 全矢样本熵 噪声辅助多元经验模态分解 本征模态函数 支持向量机
在线阅读 下载PDF
基于凸优化的RPSEMD及其在滚动轴承故障诊断中的应用
16
作者 张永庆 柯伟 +2 位作者 林青云 易灿灿 马毓博 《轴承》 北大核心 2020年第6期51-57,共7页
为改善再生相移正弦辅助经验模态分解(RPSEMD)在噪声影响下鲁棒性较差的缺陷,引入了一种广义的极小极大凹罚函数(GMC)作为1范数的替代,建立起了基于凸优化的降噪框架。将该凸优化降噪方法作为一种前处理手段,随后利用RPSEMD对预处理过... 为改善再生相移正弦辅助经验模态分解(RPSEMD)在噪声影响下鲁棒性较差的缺陷,引入了一种广义的极小极大凹罚函数(GMC)作为1范数的替代,建立起了基于凸优化的降噪框架。将该凸优化降噪方法作为一种前处理手段,随后利用RPSEMD对预处理过的信号进行模态分解。数值仿真信号和实测轴承故障信号的试验结果,以及与EMD及EEMD的对比分析表明,该方法能够消除模态混叠现象的影响,有效提取轴承的故障特征频率。 展开更多
关键词 滚动轴承 故障诊断 凸优化 再生相移正弦辅助经验模式分解 特征提取
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部