针对基本正弦余弦算法(sine cosine algorithm,SCA)求解高维复杂优化问题时存在精度低、收敛慢和易陷入局部最优等缺点,提出一种改进的SCA(improved sine cosine algorithm,iSCA)。首先,该算法设计出一种基于倒S形函数的非线性转换参数...针对基本正弦余弦算法(sine cosine algorithm,SCA)求解高维复杂优化问题时存在精度低、收敛慢和易陷入局部最优等缺点,提出一种改进的SCA(improved sine cosine algorithm,iSCA)。首先,该算法设计出一种基于倒S形函数的非线性转换参数规则替代原有线性策略,从而实现从全局搜索到局部搜索的良好过渡;其次,嵌入个体历史最佳信息修改位置搜索方程以指导寻优过程,进一步改善算法的解精度和加快收敛;最后,引入翻筋斗觅食机制生成新的位置以增加群体多样性,从而降低算法陷入局部最优的概率。选取10个高维基准测试函数、10个UCI高维数据集和2个风电机组故障数据集进行仿真实验,并与基本SCA、MSCA(memoryguided SCA)和I-GWO(improved grey wolf optimizer)算法比较,结果表明,iSCA算法在精度和收敛指标上均优于其他比较方法。展开更多
电鳗觅食优化算法EEFO(Electric Eel Foraging Optimization)在迭代过程中会出现全局探索能力不足、容易陷入局部最优和收敛速度慢的问题。同时,算法的性能受到参数设置的影响,需要仔细调整和优化。对此,提出了一种多策略改进的电鳗觅...电鳗觅食优化算法EEFO(Electric Eel Foraging Optimization)在迭代过程中会出现全局探索能力不足、容易陷入局部最优和收敛速度慢的问题。同时,算法的性能受到参数设置的影响,需要仔细调整和优化。对此,提出了一种多策略改进的电鳗觅食优化算法(IEEFO)。首先,调整能量因子策略,引入了双曲正切能量因子,使算法在迭代过程中提前加入开发行为,从而快速发现最优种群,加快收敛速度;之后,改进扰动因子,扩大电鳗游走的位置范围,有利于种群的全局寻优;然后,在迁徙阶段加入正弦余弦策略,促进算法的局部开发;最后,在每次迭代之后,加入透镜成像反向学习的策略来扩大搜索空间,使得算法跳出局部最优并加速收敛到全局最优解。将IEEFO分别与6种基本算法、4种单策略改进的电鳗觅食优化算法进行对比,对13个基准函数进行仿真实验,对IEEFO算法进行性能评估。实验结果表明,IEEFO相比于对比算法收敛速度更快,全局寻优能力更强,算法总体性能有显著提升。此外,通过一个机械优化设计实验进行测试分析,进一步验证了IEEFO的有效性和适用性。展开更多
如何实现多约束条件下测试时间优化是目前片上网络(NoC)测试中亟待解决的问题。提出一种基于正弦余弦算法(SCA)的NoC测试规划优化方法。采用专用TAM的并行测试方法,在满足功耗、引脚约束的条件下,建立测试规划模型,对NoC进行测试。通过...如何实现多约束条件下测试时间优化是目前片上网络(NoC)测试中亟待解决的问题。提出一种基于正弦余弦算法(SCA)的NoC测试规划优化方法。采用专用TAM的并行测试方法,在满足功耗、引脚约束的条件下,建立测试规划模型,对NoC进行测试。通过群体围绕最优解进行正弦、余弦的波动,以及多个随机算子和自适应变量进行寻优,达到最小化测试时间的目的。在ITC’02 test benchmarks测试集上进行对比实验,结果表明相比粒子群优化(PSO)算法,提出的算法能够获得更短的测试时间。展开更多
文摘针对基本正弦余弦算法(sine cosine algorithm,SCA)求解高维复杂优化问题时存在精度低、收敛慢和易陷入局部最优等缺点,提出一种改进的SCA(improved sine cosine algorithm,iSCA)。首先,该算法设计出一种基于倒S形函数的非线性转换参数规则替代原有线性策略,从而实现从全局搜索到局部搜索的良好过渡;其次,嵌入个体历史最佳信息修改位置搜索方程以指导寻优过程,进一步改善算法的解精度和加快收敛;最后,引入翻筋斗觅食机制生成新的位置以增加群体多样性,从而降低算法陷入局部最优的概率。选取10个高维基准测试函数、10个UCI高维数据集和2个风电机组故障数据集进行仿真实验,并与基本SCA、MSCA(memoryguided SCA)和I-GWO(improved grey wolf optimizer)算法比较,结果表明,iSCA算法在精度和收敛指标上均优于其他比较方法。
文摘电鳗觅食优化算法EEFO(Electric Eel Foraging Optimization)在迭代过程中会出现全局探索能力不足、容易陷入局部最优和收敛速度慢的问题。同时,算法的性能受到参数设置的影响,需要仔细调整和优化。对此,提出了一种多策略改进的电鳗觅食优化算法(IEEFO)。首先,调整能量因子策略,引入了双曲正切能量因子,使算法在迭代过程中提前加入开发行为,从而快速发现最优种群,加快收敛速度;之后,改进扰动因子,扩大电鳗游走的位置范围,有利于种群的全局寻优;然后,在迁徙阶段加入正弦余弦策略,促进算法的局部开发;最后,在每次迭代之后,加入透镜成像反向学习的策略来扩大搜索空间,使得算法跳出局部最优并加速收敛到全局最优解。将IEEFO分别与6种基本算法、4种单策略改进的电鳗觅食优化算法进行对比,对13个基准函数进行仿真实验,对IEEFO算法进行性能评估。实验结果表明,IEEFO相比于对比算法收敛速度更快,全局寻优能力更强,算法总体性能有显著提升。此外,通过一个机械优化设计实验进行测试分析,进一步验证了IEEFO的有效性和适用性。
文摘如何实现多约束条件下测试时间优化是目前片上网络(NoC)测试中亟待解决的问题。提出一种基于正弦余弦算法(SCA)的NoC测试规划优化方法。采用专用TAM的并行测试方法,在满足功耗、引脚约束的条件下,建立测试规划模型,对NoC进行测试。通过群体围绕最优解进行正弦、余弦的波动,以及多个随机算子和自适应变量进行寻优,达到最小化测试时间的目的。在ITC’02 test benchmarks测试集上进行对比实验,结果表明相比粒子群优化(PSO)算法,提出的算法能够获得更短的测试时间。