期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于CNN-GRU深度学习的模块化多电平矩阵变换器故障诊断 被引量:1
1
作者 朱晋 程启明 程尹曼 《南方电网技术》 CSCD 北大核心 2024年第11期13-22,共10页
模块化多电平矩阵变换器(modular multilevel matrix converter,M3C)是一种用于海上风力发电的低频电力传输AC-AC变换器。为了提高M3C工作的可靠性和稳定性,对其子模块中IGBT(insulated gate bipolar transistor)的开路故障需要有高效... 模块化多电平矩阵变换器(modular multilevel matrix converter,M3C)是一种用于海上风力发电的低频电力传输AC-AC变换器。为了提高M3C工作的可靠性和稳定性,对其子模块中IGBT(insulated gate bipolar transistor)的开路故障需要有高效准确的诊断方法,为此提出了基于卷积神经网络(convolutional neural network,CNN)和门控循环单元(gated loop unit,GRU)相结合的深度学习故障诊断方法。在对M3C子模块运行工况分析基础上对原始故障数据进行小波包分析,并通过时序图像转换将其中高频分量转化为二维故障图片作为深度学习的训练及验证数据集,经过CNN对高维数据的特征提取,再通过GRU对数据进行优化训练,实现了对M3C故障类别的诊断识别。所提方法相比传统方法具有更加准确、快速的故障诊断能力。 展开更多
关键词 模块多电平矩阵变换器 小波包分析 卷积神经网络 门控循环单元 故障诊断
在线阅读 下载PDF
面向中文新闻文本分类的融合网络模型 被引量:12
2
作者 胡玉兰 赵青杉 +1 位作者 陈莉 牛永洁 《中文信息学报》 CSCD 北大核心 2021年第3期107-114,共8页
针对神经网络文本分类模型随着层数的加深,在训练过程中发生梯度爆炸或消失以及学习到的词在文本中的语义信息不够全面的问题,该文提出了一种面向中文新闻文本分类的融合网络模型。该模型首先采用密集连接的双向门控循环神经网络学习文... 针对神经网络文本分类模型随着层数的加深,在训练过程中发生梯度爆炸或消失以及学习到的词在文本中的语义信息不够全面的问题,该文提出了一种面向中文新闻文本分类的融合网络模型。该模型首先采用密集连接的双向门控循环神经网络学习文本的深层语义表示,然后将前一层学到的文本表示通过最大池化层降低特征词向量维度,同时保留其主要特征,并采用自注意力机制获取文本中更关键的特征信息,最后将所学习到的文本表示拼接后通过分类器对文本进行分类。实验结果表明:所提出的融合模型在中文新闻长文本分类数据集NLPCC2014上进行实验,其精度、召回率、F1-score指标均优于最新模型AC-BiLSTM。 展开更多
关键词 文本分类 密集连接 双向门控循环神经网络 最大池 自注意力机制
在线阅读 下载PDF
基于混沌CSO优化时序注意力GRU模型的超短期风电功率预测 被引量:29
3
作者 孟安波 陈顺 +4 位作者 王陈恩 丁伟锋 蔡涌烽 符嘉晋 周华敏 《电网技术》 EI CSCD 北大核心 2021年第12期4692-4700,共9页
高精度的风电功率预测对风电的并网运营至关重要。为提取风电功率输入序列隐含的时间信息,建立以门控循环单元为基础的预测模型;并在模型输入侧引入时序注意力机制,通过与输入进行加权的方式提高模型对关键历史时间节点的敏感性。为加... 高精度的风电功率预测对风电的并网运营至关重要。为提取风电功率输入序列隐含的时间信息,建立以门控循环单元为基础的预测模型;并在模型输入侧引入时序注意力机制,通过与输入进行加权的方式提高模型对关键历史时间节点的敏感性。为加速模型收敛,在训练的早期利用动态混沌纵横交叉算法优化预测模型的权值和阈值;同时,通过构造多指标共同作用并联合待优化参数的正则项作为目标适应度函数,以避免优化过程中模型泛化性问题的出现。以某风电场采集间隔为1h和10min的实测数据进行实验,结果表明所提组合预测方法性能优于其他对比模型,并对其有效性进行了验证。 展开更多
关键词 风电功率预测 门控循环单元 时序注意力机制 动态混沌纵横交叉算法 正则
在线阅读 下载PDF
基于MRSDAE-SOM结合HGRU的滚动轴承RUL预测 被引量:1
4
作者 陈家芳 刘钰凡 吴朗 《现代制造工程》 CSCD 北大核心 2024年第3期148-155,53,共9页
基于传统方法预测轴承剩余使用寿命(Residual Useful Life,RUL),步骤繁多,成本昂贵,且模型不具泛化性。现有的基于深度学习(Deep Learning,DL)的预测方法,由于数据量过大,经常导致模型出现过拟合现象,从而使模型精度不高。为了克服以上... 基于传统方法预测轴承剩余使用寿命(Residual Useful Life,RUL),步骤繁多,成本昂贵,且模型不具泛化性。现有的基于深度学习(Deep Learning,DL)的预测方法,由于数据量过大,经常导致模型出现过拟合现象,从而使模型精度不高。为了克服以上缺点,提出一种基于MRSDAE-SOM结合HGRU的滚动轴承RUL预测方法。首先,使用无监督式网络流形正则化堆栈去噪自编码器(Manifold Regularization Stack Denoising Auto Encoder,MRSDAE)结合自组织映射(Self-Or-ganizing Mapping,SOM)构建轴承健康因子(Health Indicator,HI)。然后,通过分层门控循环单元(Hierarchical Gated Re-current Unit,HGRU)网络建立预测模型,HGRU网络通过加入多尺度层和密集层,使其具有捕获时序特征且集成不同时间尺度注意力信息的能力。最后,通过实验验证表明,相比于其他基于数据驱动的方法,所提方法构建健康因子使用无监督方式,高效快捷且便于应用;预测模型泛化能力好,并有效防止了过拟合现象,实现了更高的预测精度。 展开更多
关键词 深度学习 剩余使用寿命 流形正则堆栈去噪自编码器 分层门控循环单元
在线阅读 下载PDF
基于农村发展模式分析的中长期负荷预测方法 被引量:8
5
作者 熊宁 肖异瑶 +2 位作者 姚志刚 钟士元 舒娇 《电力系统及其自动化学报》 CSCD 北大核心 2021年第3期94-101,共8页
针对农村用电方式和用电需求变化问题,本文在考虑国家政策、农村经济等影响农村发展模式及负荷变化因素的基础上,提出了一种基于农村发展模式分析的中长期负荷预测方法。首先,对电力系统大数据进行了分析,提出了K-means-Robust聚类算法... 针对农村用电方式和用电需求变化问题,本文在考虑国家政策、农村经济等影响农村发展模式及负荷变化因素的基础上,提出了一种基于农村发展模式分析的中长期负荷预测方法。首先,对电力系统大数据进行了分析,提出了K-means-Robust聚类算法与加权自适应K近邻算法,搭建了农村发展模式预测模型。然后,针对不同农村发展模式,使用基于灰色关联度分析的正则化门控循环神经网络模型预测农村中长期负荷变化曲线。最后,以某农村为例,验证了所提方法的可行性。 展开更多
关键词 农村用电负荷 中长期 负荷预测 K-means-Robust聚类 加权自适应K近邻 正则化门控循环神经网络
在线阅读 下载PDF
基于AMCNN-BiGRU的滚动轴承故障诊断方法研究 被引量:6
6
作者 徐鹏 皋军 邵星 《振动与冲击》 EI CSCD 北大核心 2023年第18期71-80,共10页
为克服传统滚动轴承故障诊断方法需要人工提取特征的缺点,提出一种基于注意力模块的卷积神经网络-双向门控循环单元的滚动轴承故障诊断方法。该方法利用下采样后的原始振动信号作为输入,通过具有两种不同核大小的并行卷积块从采样后的... 为克服传统滚动轴承故障诊断方法需要人工提取特征的缺点,提出一种基于注意力模块的卷积神经网络-双向门控循环单元的滚动轴承故障诊断方法。该方法利用下采样后的原始振动信号作为输入,通过具有两种不同核大小的并行卷积块从采样后的数据中提取特征,并使用注意力模块对提取的特征进行加权融合处理,最后将具有不同权重的特征输入到双向门控循环单元进行故障分类,从而实现端到端的诊断。为了理解所提出模型的诊断过程,对所学习的特征进行可视化,分析发现模型可以有效映射不同类型的故障。经试验表明,该模型使用下采样后的原始数据有效缩短了网络的训练时间,同时还可以保持100%的诊断准确率。 展开更多
关键词 卷积神经网络 门控循环单元 注意力机制 轴承故障诊断 可视
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部