期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种基于正则化最小二乘的多标记分类算法 被引量:3
1
作者 吕静 何志芬 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第1期139-147,共9页
在传统的监督学习中,每个对象由单个实例表示且只属于一个类别标记.然而,在多标记学习中,每个对象由一个实例表示但可能同时属于多个类别标记,其任务是预测未知样本的类别标记集合.本文提出了基于正则化最小二乘的多标记分类算法,即将... 在传统的监督学习中,每个对象由单个实例表示且只属于一个类别标记.然而,在多标记学习中,每个对象由一个实例表示但可能同时属于多个类别标记,其任务是预测未知样本的类别标记集合.本文提出了基于正则化最小二乘的多标记分类算法,即将传统的正则化最小二乘分类推广到多标记学习中.首先,将多标记学习问题转化为多个独立的二分类问题(每个对应一个类别标记);其次,为了充分利用类别标记之间的相关信息,构建了基于类别标记的邻接图,其中每个节点代表一个类别标记,每条边的权重反映了相应类别标记对之间的相似性.最后,构建了建立在核函数基础上的多标记正则化最小二乘模型,并可以转化为求解一个Sylvester方程.在8个基准数据集上用5种不同的评价准则进行度量的实验结果表明了本文算法优于其他6种常用的多标记分类算法. 展开更多
关键词 多标记学习 正则化最小二乘分类 分类问题 核函数 SYLVESTER方程
在线阅读 下载PDF
基于Laplacian正则化最小二乘的半监督SAR目标识别 被引量:13
2
作者 张向荣 阳春 焦李成 《软件学报》 EI CSCD 北大核心 2010年第4期586-596,共11页
提出了一种基于核主成分分析(kernel principal component analysis,简称KPCA)和拉普拉斯正则化最小二乘(Laplacian regularized least squares,简称LapRLS)的合成孔径雷达(synthetic aperture radar,简称SAR)目标识别方法.KPCA特征提... 提出了一种基于核主成分分析(kernel principal component analysis,简称KPCA)和拉普拉斯正则化最小二乘(Laplacian regularized least squares,简称LapRLS)的合成孔径雷达(synthetic aperture radar,简称SAR)目标识别方法.KPCA特征提取方法不仅能够提取目标主要特征,而且有效地降低了特征维数.Laplacian正则化最小二乘分类是一种半监督学习方法,将训练集样本作为有标识样本,测试集样本作为无标识样本,在学习过程中将测试集样本包含进来以获得更高的识别率.在MSTAR实测SAR地面目标数据上进行实验,结果表明,该方法具有较高的识别率,并对目标角度间隔具有鲁棒性.与模板匹配法、支撑矢量机以及正则化最小二乘监督学习方法相比,具有更高的SAR目标识别正确率.此外,还通过实验分析了不同情况下有标识样本数目对目标识别性能的影响. 展开更多
关键词 核主成分分析 半监督学习 拉普拉斯正则化最小二乘分类 SAR 目标识别
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部