期刊文献+
共找到59篇文章
< 1 2 3 >
每页显示 20 50 100
正则化最小二乘的正交局部保持判别投影的人脸识别
1
作者 李勇周 罗大庸 《小型微型计算机系统》 CSCD 北大核心 2009年第9期1847-1850,共4页
提出一种新的子空间学习方法:正则化最小二乘的正交局部保持判别投影.为了更好地保持数据流形的结构,融合局部保持投影和线性判别分析的特点,对类内和类间加权矩阵分别进行了定义,从而构造目标函数.首先使用特征分解求出训练样本在人脸... 提出一种新的子空间学习方法:正则化最小二乘的正交局部保持判别投影.为了更好地保持数据流形的结构,融合局部保持投影和线性判别分析的特点,对类内和类间加权矩阵分别进行了定义,从而构造目标函数.首先使用特征分解求出训练样本在人脸子空间的投影,然后使用最小二乘法解出投影子空间,最后将子空间的基向量正交化.在标准人脸数据库上的试验证明了这种识别方法的正确和有效. 展开更多
关键词 人脸识别 则化最小二乘 正交局部保持判别投影
在线阅读 下载PDF
基于核的正交局部保持投影的人脸识别 被引量:15
2
作者 金一 阮秋琦 《电子与信息学报》 EI CSCD 北大核心 2009年第2期283-287,共5页
针对发掘人脸图像中的高维非线性结构,本文将加核及向量间相互正交两种思想同时引入局部保留投影算法中,提出了一种新的基于核的正交局部保持投影(Kernel based Orthogonal Locality Preserving Projections,KOLPP)的非线性子空间人脸... 针对发掘人脸图像中的高维非线性结构,本文将加核及向量间相互正交两种思想同时引入局部保留投影算法中,提出了一种新的基于核的正交局部保持投影(Kernel based Orthogonal Locality Preserving Projections,KOLPP)的非线性子空间人脸识别算法并给出了其推导过程。该算法首先利用核的方法提取人脸图像中的非线性信息,并将其投影在一个高维非线性空间,在保证各向量正交的同时,通过局部保持投影算法做一线性映射,从而更好地提取人脸非线性局部邻域结构特征。在ORL和Yale人脸库上的试验证明了该文所提算法的有效性。 展开更多
关键词 人脸识别 特征提取 核方法 局部保持投影
在线阅读 下载PDF
基于极小准则的完备正交判别局部保持算法 被引量:1
3
作者 林玉娥 李敬兆 +1 位作者 梁兴柱 林玉荣 《光电工程》 CAS CSCD 北大核心 2011年第3期145-150,共6页
以无监督判别投影算法为理论基础,提出了一种基于极小准则的完备正交判别局部保持投影算法。算法首先根据同类样本的空间信息重新定义了类内局部保持散度矩阵与类间局部保持散度矩阵,然后借鉴无监督判别投影算法的目标函数,推导出一个... 以无监督判别投影算法为理论基础,提出了一种基于极小准则的完备正交判别局部保持投影算法。算法首先根据同类样本的空间信息重新定义了类内局部保持散度矩阵与类间局部保持散度矩阵,然后借鉴无监督判别投影算法的目标函数,推导出一个基于极小准则的目标函数,该目标函数通过投影到总体散度矩阵的非零空间中有效地解决小样本问题,最后给出了该算法基于QR分解的正交投影矩阵的求解方法。人脸库上的实验结果表明了所提方法的有效性。 展开更多
关键词 完备判别局部保持投影算法 散度矩阵 无监督判别投影算法 目标函数 非零空间
在线阅读 下载PDF
基于随机子空间-正交局部保持投影的支持向量机 被引量:3
4
作者 王雪松 高阳 程玉虎 《电子学报》 EI CAS CSCD 北大核心 2011年第8期1746-1750,共5页
针对高维数、小样本数据分类问题,提出一种基于随机子空间-正交局部保持投影的支持向量机.利用随机子空间方法对原始高维样本的特征空间进行多次随机采样,生成多个具有不同特征子集的基支持向量机(SVM)分类器;利用正交局部保持投影对各... 针对高维数、小样本数据分类问题,提出一种基于随机子空间-正交局部保持投影的支持向量机.利用随机子空间方法对原始高维样本的特征空间进行多次随机采样,生成多个具有不同特征子集的基支持向量机(SVM)分类器;利用正交局部保持投影对各基SVM分类器的样本进行特征提取,实现维数约简;然后,利用降维后的样本对各基SVM分类器进行训练;采用贝叶斯求和准则将各基SVM的分类结果进行融合以得到最终的分类结果.典型人脸数据库识别结果验证了本方法的可行性和有效性. 展开更多
关键词 随机子空间 局部保持投影 支持向量机 特征提取
在线阅读 下载PDF
基于Log-Gabor和正交局部保持投影的人耳识别方法 被引量:1
5
作者 雷松泽 齐敏 《计算机应用与软件》 CSCD 北大核心 2014年第10期172-175,共4页
针对人耳角度变化引起识别率下降的问题,提出一种结合Log-Gabor滤波和正交局部保持投影(OLPP)的人耳识别方法。首先采用Log-Gabor对图像进行滤波来提取多尺度多方向的人耳纹理特征;然后在局部保持投影的原始优化问题中增加正交约束条件... 针对人耳角度变化引起识别率下降的问题,提出一种结合Log-Gabor滤波和正交局部保持投影(OLPP)的人耳识别方法。首先采用Log-Gabor对图像进行滤波来提取多尺度多方向的人耳纹理特征;然后在局部保持投影的原始优化问题中增加正交约束条件,迭代计算出一组具有正交性最优映射向量,约简了丰富的Log-Gabor特征,并保留了人耳非线性流形子空间与距离有关的结构信息和重构样本;最后用最小欧氏距离分类器进行分类识别。对比相关的方法,该方法提高了姿态人耳的识别率。实验结果表明该方法能良好地表征姿态人耳,对角度变化具有很好的鲁棒性。 展开更多
关键词 LOG-GABOR滤波器 人耳识别 局部保持投影
在线阅读 下载PDF
基于正交局部保持映射和成本优化的多变量时间序列早期分类模型
6
作者 袁子璇 翁小清 戈宁振 《计算机应用》 CSCD 北大核心 2024年第6期1832-1841,共10页
时间序列早期分类(ETSC)有两个矛盾的目标:早期性和准确率。分类早期性的实现,总是以牺牲它的准确率为代价。现有基于优化的多变量时间序列(MTS)早期分类方法,虽然在成本函数中考虑了错误分类成本和延迟决策成本,却忽视了MTS数据集样本... 时间序列早期分类(ETSC)有两个矛盾的目标:早期性和准确率。分类早期性的实现,总是以牺牲它的准确率为代价。现有基于优化的多变量时间序列(MTS)早期分类方法,虽然在成本函数中考虑了错误分类成本和延迟决策成本,却忽视了MTS数据集样本之间的局部结构对分类性能的影响。针对这个问题,提出一种基于正交局部保持映射(OLPP)和成本优化的MTS早期分类模型(OLPPMOAE)。首先,使用OLPP将MTS样本前缀映射到低维空间,保持原数据集的局部结构;其次,在低维空间训练一组高斯过程(GP)分类器,生成训练集每个时刻的类概率;最后,使用粒子群优化(PSO)算法从这些类概率中学习停止规则中的最优参数。在6个MTS数据集上的实验结果表明,在早期性基本持平的情况下,OLPPMOAE的准确率显著高于基于成本的R1_C_(lr)(stopping Rule and Cost function with regularization term l_(1)and l_(2))模型,平均准确率能够提升11.33%~15.35%,调和均值(HM)能够提升4.71%~9.01%。因此,所提模型能够以较高的准确率尽早地分类MTS。 展开更多
关键词 多变量时间序列 早期分类 局部保持映射 成本优化 高斯过程分类器
在线阅读 下载PDF
基于图嵌入的正交局部保持投影无监督特征选择
7
作者 朱建勇 李兆祥 +2 位作者 徐彬 杨辉 聂飞平 《计算机科学》 CSCD 北大核心 2023年第S02期540-548,共9页
传统的基于图学习的无监督特征选择算法通常采用稀疏正则化方法来选择特征,但这种方法过于依赖于图学习的效率,并且存在正则化参数调优困难等问题。为解决这些问题,针对性地提出了一种基于图嵌入学习的正交局部保持投影无监督特征选择(O... 传统的基于图学习的无监督特征选择算法通常采用稀疏正则化方法来选择特征,但这种方法过于依赖于图学习的效率,并且存在正则化参数调优困难等问题。为解决这些问题,针对性地提出了一种基于图嵌入学习的正交局部保持投影无监督特征选择(Orthogonal Locality Preserving Projection Unsupervised Feature Selection via Graph Embedding,OLPPFS)算法。首先,利用能够保持数据局部几何流形结构的局部保持投影方法增强数据的线性映射能力,同时约束正交方向投影以方便数据重构;其次,通过图嵌入学习方法快速构建稀疏相似图来描述样本数据的内在结构;接着,采用l_(2,0)范数约束投影矩阵的值,准确选择指定数目的判别性特征子集;最后,针对l_(2,0)范数NP难题,设计一种有效求解l_(2,0)范数问题的无参迭代算法求解该模型。仿真结果表明了所提算法的有效性和优越性。 展开更多
关键词 无监督特征选择 局部保持投影 图嵌入学习 l_(2 0)范数 无参迭代算法
在线阅读 下载PDF
基于核schur正交局部Fisher判别的转子故障诊断 被引量:12
8
作者 王广斌 刘义伦 黄良沛 《仪器仪表学报》 EI CAS CSCD 北大核心 2010年第5期1005-1009,共5页
为更好识别转子系统故障,将核映射和向量正交思想引入到局部Fisher判别分析(LFDA)中,提出基于核schur正交局部Fisher判别(KSOLFD)的流形学习算法。首先通过核函数将故障特征信号映射到高维子空间,在该空间重新定义类内散度和类间散度,... 为更好识别转子系统故障,将核映射和向量正交思想引入到局部Fisher判别分析(LFDA)中,提出基于核schur正交局部Fisher判别(KSOLFD)的流形学习算法。首先通过核函数将故障特征信号映射到高维子空间,在该空间重新定义类内散度和类间散度,构建核局部Fisher判别函数,在特征值求解时以schur正交方式找出最优投影向量,进行故障诊断。算法保证了数据降维时重构误差最小,提高了故障诊断效果。实验表明,KSOLFD故障诊断效果相对其他流形学习算法最好。 展开更多
关键词 核映射 schur 局部Fisher判别 故障诊断
在线阅读 下载PDF
基于监督正交局部保持映射的植物叶片图像分类方法 被引量:15
9
作者 张善文 张传雷 程雷 《农业工程学报》 EI CAS CSCD 北大核心 2013年第5期125-131,共7页
针对传统的线性分类方法不能有效处理复杂、多变和非线性的植物叶片图像,在局部保持映射算法的基础上,提出了一种监督正交局部保持映射算法,并应用于基于植物叶片图像分类中。该算法首先利用Warshall算法计算样本的类别矩阵,在此基础上... 针对传统的线性分类方法不能有效处理复杂、多变和非线性的植物叶片图像,在局部保持映射算法的基础上,提出了一种监督正交局部保持映射算法,并应用于基于植物叶片图像分类中。该算法首先利用Warshall算法计算样本的类别矩阵,在此基础上充分利用样本的局部信息和类别信息构造类间散度矩阵和类内散度矩阵,使得维数约简后,在低维子空间同类样本之间的距离变小,而不同类样本之间的距离增大,由此提高了该算法的分类能力。最后,利用K-最近邻分类器进行植物分类。与经典的监督子空间维数约简方法相比,该方法在构建类内和类间散度矩阵时不需要判别数据的类别信息,能够提高算法的分类性能。在公开植物叶片图像数据库上进行了一系列植物叶片分类试验,平均正确识别率高达95.92%。试验结果表明了该算法在植物分类中的可行性。 展开更多
关键词 图像处理 算法 试验 植物叶片分类 局部保持映射 监督局部保持映射
在线阅读 下载PDF
有监督不相关正交局部保持映射故障辨识 被引量:15
10
作者 李锋 王家序 杨荣松 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第5期1113-1120,共8页
提出基于有监督不相关正交局部保持映射(SUOLPP)维数化简的故障辨识方法。首先构造全面表征不同故障特征的时频域特征集,再利用SUOLLP将高维时频域特征集自动约简为具有更好区分度的低维特征矢量,并输入到Littlewood-Paley小波核支持向... 提出基于有监督不相关正交局部保持映射(SUOLPP)维数化简的故障辨识方法。首先构造全面表征不同故障特征的时频域特征集,再利用SUOLLP将高维时频域特征集自动约简为具有更好区分度的低维特征矢量,并输入到Littlewood-Paley小波核支持向量机中进行故障模式辨识。时频域特征融集可较全面准确地反映旋转机械的故障特征;SUOLPP同时利用流形局部几何结构和类标签来设计相似加权矩阵,并使输出基向量统计不相关和相互正交,提高了故障辨识精度。深沟球轴承故障诊断和空间轴承寿命状态辨识实例验证了该方法的有效性。 展开更多
关键词 时频域特征集 有监督不相关局部保持映射 维数化简 流形学习 故障辨识
在线阅读 下载PDF
基于随机投影的正交判别流形学习算法 被引量:3
11
作者 马丽 董唯光 +1 位作者 梁金平 张晓东 《郑州大学学报(理学版)》 CAS 北大核心 2016年第1期102-109,115,共9页
提出一种基于流形距离的局部线性嵌入算法,以流形距离测度数据间的相似度,选择各样本点的近邻域,解决了欧氏距离作为相似性度量时对邻域参数的敏感性.在MDLLE算法中引入最大边缘准则(maximum margin criterion,MMC)来构建最优平移缩放模... 提出一种基于流形距离的局部线性嵌入算法,以流形距离测度数据间的相似度,选择各样本点的近邻域,解决了欧氏距离作为相似性度量时对邻域参数的敏感性.在MDLLE算法中引入最大边缘准则(maximum margin criterion,MMC)来构建最优平移缩放模型,使得算法在保持LLE局部几何结构的同时,具有MMC准则判别能力.通过正交化低维特征向量可消除降维过程中的噪声影响,进而提高算法的监督判别能力.由实验结果得到,所提出的方法具有良好的降维效果,能有效避免局部降维算法对邻域参数的敏感.随机投影独立于原始高维数据,将高维数据映射到一个行单位化的随机变换矩阵的低维空间中,维持映射与原始数据的紧密关系,从理论上分析证明了在流形学习算法中采用随机投影可以高概率保证在低维空间保持高维数据信息. 展开更多
关键词 流形学习算法 邻域选择 流形距离 判别 局部线性嵌入 随机投影
在线阅读 下载PDF
判别式正交线性局部切空间排列故障辨识 被引量:4
12
作者 李锋 赵洁 +1 位作者 王家序 丁行武 《计算机集成制造系统》 EI CSCD 北大核心 2014年第1期173-181,共9页
针对现有旋转机械故障诊断模式难以实现自动化、高精度和泛化性的关键问题,提出基于判别式正交线性局部切空间排列特征约简的故障辨识方法。该方法首先构造全面表征不同故障特性的时、频域特征集,再利用DOLLTSA将高维时、频域特征集自... 针对现有旋转机械故障诊断模式难以实现自动化、高精度和泛化性的关键问题,提出基于判别式正交线性局部切空间排列特征约简的故障辨识方法。该方法首先构造全面表征不同故障特性的时、频域特征集,再利用DOLLTSA将高维时、频域特征集自动约简为区分度更好的低维特征矢量,并输入到K-近邻分类器中进行故障模式辨识。时、频域特征融集可较全面准确地反映旋转机械的故障特征;DOLLTSA综合利用局部几何结构和类判别信息进行流形解耦,并采用谱回归法和子空间正交化处理来优化低维嵌入子空间,提高了故障辨识精度。深沟球轴承故障诊断实例和空间轴承寿命状态辨识实例验证了所提方法的有效性。 展开更多
关键词 时、频域特征集 判别线性局部切空间排列 特征约简 流形学习 故障辨识
在线阅读 下载PDF
直接无监督正交局部保持特征提取算法 被引量:2
13
作者 林玉娥 李敬兆 +1 位作者 梁兴柱 林玉荣 《光电工程》 CAS CSCD 北大核心 2012年第3期100-105,共6页
基于局部保持投影发展出的一系列特征提取算法,在应用于人脸识别等高维小样本问题时,均需先采用PCA算法对高维样本降维后才能应用,故此以无监督鉴别分析算法为理论基础,提出了一种直接无监督正交局部保持算法。该算法利用拉普拉斯矩阵... 基于局部保持投影发展出的一系列特征提取算法,在应用于人脸识别等高维小样本问题时,均需先采用PCA算法对高维样本降维后才能应用,故此以无监督鉴别分析算法为理论基础,提出了一种直接无监督正交局部保持算法。该算法利用拉普拉斯矩阵的性质进行相应的矩阵分解,可直接从高维样本的原始空间中提取投影矩阵,因而无需先采用PCA降维处理,且解决了无监督鉴别分析算法的小样本问题。为了进一步提高算法的识别性能,给出了基于QR分解的正交投影矩阵的求解方法。人脸库和掌纹库上的实验结果表明了所提算法的有效性。 展开更多
关键词 局部保持投影 无监督鉴别分析 直接无监督局部保持投影算法 拉普拉斯矩阵
在线阅读 下载PDF
基于Schur正交的局部Fisher判别转子故障诊断 被引量:4
14
作者 王广斌 李学军 黄良沛 《机械科学与技术》 CSCD 北大核心 2011年第1期62-65,共4页
为更好识别转子系统故障,将正交思想引入到局部Fisher判别分析(LFDA)中,提出了一种基于Schur正交的局部Fisher判别(SOLFD)监督流形学习算法。算法以转子故障训练样本为监督信息,通过局部加权邻接矩阵重新定义类内散度和类间散度,构建局... 为更好识别转子系统故障,将正交思想引入到局部Fisher判别分析(LFDA)中,提出了一种基于Schur正交的局部Fisher判别(SOLFD)监督流形学习算法。算法以转子故障训练样本为监督信息,通过局部加权邻接矩阵重新定义类内散度和类间散度,构建局部Fisher判别函数。以判别函数值最大化为目标,通过Schur正交分解方式求解最优正交投影向量。将新增测试数据投影到该向量上,获取新数据故障类别信息。转子故障诊断实验表明,相对其他流形学习算法,SOLFD算法有更好的诊断效果。 展开更多
关键词 Schur 局部Fisher判别 故障诊断
在线阅读 下载PDF
正交全局-局部判别映射应用于植物叶片分类 被引量:7
15
作者 张善文 巨春飞 《农业工程学报》 EI CAS CSCD 北大核心 2010年第10期162-166,共5页
提出了一种正交全局-局部判别映射的维数约简方法,并应用于植物叶片分类中。对于给定点的邻域点集,首先建立能够描述数据点之间关系的权重矩阵;然后,充分利用数据的类别信息和局部信息来构建类间散度矩阵和局部结构矩阵,使得映射后类内... 提出了一种正交全局-局部判别映射的维数约简方法,并应用于植物叶片分类中。对于给定点的邻域点集,首先建立能够描述数据点之间关系的权重矩阵;然后,充分利用数据的类别信息和局部信息来构建类间散度矩阵和局部结构矩阵,使得映射后类内数据点之间的距离减小,而类间数据点之间的距离增大,这一性质有利于数据分类;最后,构造正交优化目标函数,通过Lagrange数乘法求解该目标函数。植物叶片图像分类的试验结果表明,该方法是有效、可行的。 展开更多
关键词 流形学习 植物叶片分类 全局-局部判别映射
在线阅读 下载PDF
局部保持多投影向量Fisher判别分析算法 被引量:2
16
作者 张召 业宁 业巧林 《计算机学报》 EI CSCD 北大核心 2010年第5期865-876,共12页
特征选择是在损失较少信息的情况下处理高维图像数据的关键技术,是高维数据预处理的重要步骤.通过引入Fisher判别分析(Fisher Discriminant Analysis,FDA)和典型相关分析(Canonical Correlation Analysis,CCA)的思想,采用以样本的类标... 特征选择是在损失较少信息的情况下处理高维图像数据的关键技术,是高维数据预处理的重要步骤.通过引入Fisher判别分析(Fisher Discriminant Analysis,FDA)和典型相关分析(Canonical Correlation Analysis,CCA)的思想,采用以样本的类标号形式给出的先验信息,考虑样本数据的局部性,提出了一种监督的基于Fisher判别信息的局部保持多投影向量分析方法(Locality Preserving Multi-projection Vector Fisher Discriminant Analysis,LPMVF).通过定义新准则,LPMVF具有以下优点:(1)便于计算,可有效避免奇异性;(2)借助标准核映射,可快速将LPMVF推广到非线性的特征空间;(3)与CCA算法类似,LPMVF最终得到一对投影变换,可有效嵌入样本数据,可将原始数据投影成一系列"有用的"特征形式,并使数据的投影在嵌入空间中更具可分离性;(4)与局部化的Fisher判别分析(Local Fisher Discriminant Analysis,简称LFDA)相比,LPMVF也能够有效保持数据样本间的局部近邻关系;(5)在大多数情况下,该文算法的学习能力甚至优于经典的FDA、KFD和LFDA算法.在几个标准数据集上的实验结果表明,LPMVF及其非线性的推广算法能够提取出描述能力更强的特征信息,可有效利用类标号监督信息提高分类性能. 展开更多
关键词 局部保持 投影向量 特征选择 分类 判别分析
在线阅读 下载PDF
基于无参数二维判别局部保持投影算法的人脸识别 被引量:2
17
作者 龚劬 王珂 +1 位作者 冉清华 谷雅宁 《计算机工程与应用》 CSCD 北大核心 2016年第10期151-156,共6页
通过向二维局部保持投影(2D-LPP)算法中引入类间约束和类标识信息,得到二维判别局部保持投影(2D-DLPP)算法,使它拥有更多的判别信息。但它却面临复杂的参数选择问题,这使得它在解决识别问题时受到限制。为解决此问题,构造无参数的相似矩... 通过向二维局部保持投影(2D-LPP)算法中引入类间约束和类标识信息,得到二维判别局部保持投影(2D-DLPP)算法,使它拥有更多的判别信息。但它却面临复杂的参数选择问题,这使得它在解决识别问题时受到限制。为解决此问题,构造无参数的相似矩阵,提出无参数的二维判别局部投影(无参数2D-DLPP)算法。在Yale和ORL人脸库上的仿真实验结果表明,该算法与二维判别局部保持投影(2D-DLPP)、二维局部保持投影法(2D-LPP)和二维线性判别分析法(2D-LDA)相比能够取得更高的识别率。 展开更多
关键词 人脸识别 特征提取 二维判别局部保持投影 无参数
在线阅读 下载PDF
基于正交局部保持映射的转子故障诊断方法 被引量:2
18
作者 孙斌 刘立远 雷伟 《中国机械工程》 EI CAS CSCD 北大核心 2014年第16期2219-2224,共6页
为了改善故障模式识别的分类性能,提出了一种基于正交局部保持映射算法的多流形特征提取方法。对于高维的非线性数据可以有效地提取低维流形特征向量,并且不会改变数据的内在属性。利用转子的振动信号构造一个高维多征兆矩阵,然后在应... 为了改善故障模式识别的分类性能,提出了一种基于正交局部保持映射算法的多流形特征提取方法。对于高维的非线性数据可以有效地提取低维流形特征向量,并且不会改变数据的内在属性。利用转子的振动信号构造一个高维多征兆矩阵,然后在应用正交局部保持映射将这个高维矩阵进行降维,提取低维特征向量矩阵,映射在可视空间里,从而可以有效地达到故障分类的效果,提高故障诊断的准确率。最后通过实验和数据降维仿真证明了正交局部保持映射算法的有效性和可行性。 展开更多
关键词 模式识别 局部保持映射 特征提取 故障诊断
在线阅读 下载PDF
基于奇异值分解和判别局部保持投影的多变量时间序列分类 被引量:4
19
作者 董红玉 陈晓云 《计算机应用》 CSCD 北大核心 2014年第1期239-243,共5页
针对现有多变量时间序列分类算法存在的要求序列等长和忽视类别信息两个不足,提出基于奇异值分解(SVD)和判别局部保持投影的分类算法。该算法基于降维思想,先通过SVD将样本的第一右奇异向量作为特征向量,以此将不等长序列转化为规模大... 针对现有多变量时间序列分类算法存在的要求序列等长和忽视类别信息两个不足,提出基于奇异值分解(SVD)和判别局部保持投影的分类算法。该算法基于降维思想,先通过SVD将样本的第一右奇异向量作为特征向量,以此将不等长序列转化为规模大小相同的序列;接着采用基于最大间距准则的判别局部保持投影对特征向量投影,充分利用类别信息以确保投影后同类样本尽量接近,异类样本尽量分散;最后在低维子空间采用1最近邻(1NN)、Parzen窗、支持向量机(SVM)和朴素Bayes分类器进行分类。在Australian Sign Language(ASL)、Japanese Vowels(JV)和Wafer三个公开的多变量时间序列数据集上进行的实验结果表明:在时间开销基本不变的前提下,所提方法取得了较低的分类错误率。 展开更多
关键词 多变量时间序列 分类 奇异值分解 判别局部保持投影 最大间距准则
在线阅读 下载PDF
基于图像矩阵判别局部保持投影的人脸识别 被引量:1
20
作者 王国强 石念峰 欧宗瑛 《计算机工程与应用》 CSCD 北大核心 2010年第16期191-196,共6页
提出一种基于图像矩阵判别局部保持投影的人脸识别方法。图像矩阵判别局部保持投影是在局部保持投影基础上进行了扩展,考虑了类标签信息并在其目标函数中增加类间散度约束,使得求解的特征更具判别性。另外,图像矩阵判别局部保持投影是... 提出一种基于图像矩阵判别局部保持投影的人脸识别方法。图像矩阵判别局部保持投影是在局部保持投影基础上进行了扩展,考虑了类标签信息并在其目标函数中增加类间散度约束,使得求解的特征更具判别性。另外,图像矩阵判别局部保持投影是直接处理图像矩阵而不需要将矩阵转化为向量,保留了像素间的空间位置关系,避免了奇异性问题。实验结果表明该方法是有效的。 展开更多
关键词 局部保持投影 图像矩阵判别局部保持投影 流形学习 人脸识别
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部