高光谱遥感是监测土壤盐渍化的重要手段之一,但野外光谱反射率易受土壤水分的影响,导致盐分监测精度难以保证。为有效消除水分因素,提高土壤含盐量反演精度,该研究以银川平原盐渍化土壤为研究对象,以野外土壤光谱反射率(reflectance,Ref...高光谱遥感是监测土壤盐渍化的重要手段之一,但野外光谱反射率易受土壤水分的影响,导致盐分监测精度难以保证。为有效消除水分因素,提高土壤含盐量反演精度,该研究以银川平原盐渍化土壤为研究对象,以野外土壤光谱反射率(reflectance,Ref)和实测土壤含盐量为数据源,分析不同含水率的土壤光谱特征,将反射率经过一阶微分(first derivative of reflectance,FDR)、正交信号校正(orthogonal signal correction,OSC)和一阶微分-正交信号校正(first derivative of reflectance-orthogonal signal correction,FDR-OSC)变换,分析各光谱数据与含盐量、含水率的相关性,确定最佳“除水”方法,然后基于支持向量机(support vector machine,SVM)建立土壤含盐量反演模型。结果表明:1)含水率与土壤光谱反射率呈反比,光谱在1430、1950、2200 nm附近存在吸收带,1950 nm附近为最主要吸收波段,且存在向长波漂移的现象。2)光谱数据与含水率相关性由强到弱的顺序为:Ref、OSC、FDR、FDR-OSC;与含盐量相关性由强到弱的顺序为:FDR-OSC、FDR、OSC、Ref。3)基于FDR-OSC“除水”的SVM含盐量模型决定系数R_(c)^(2)、R_(p)^(2)和相对分析误差(relative prediction deviation,RPD)分别达到0.952、0.960和5.04,具有极强的拟合和反演能力。研究结果可为银川平原及同类地区土壤含盐量的精准监测提供科学依据。展开更多
为增强近红外光谱模型通用性,解决直接正交信号校正算法在光谱处理过程中可能出现过拟合、模型不稳定的现象,提出一种将随机森林与直接正交信号校正算法相结合的模型传递方法(Random Forest-Direct Orthogonal Signal Correction,RF-DO...为增强近红外光谱模型通用性,解决直接正交信号校正算法在光谱处理过程中可能出现过拟合、模型不稳定的现象,提出一种将随机森林与直接正交信号校正算法相结合的模型传递方法(Random Forest-Direct Orthogonal Signal Correction,RF-DOSC)。该方法首先利用随机森林算法进行近红外光谱波长点筛选,然后采用直接正交信号校正方法进行光谱处理并建立回归方程,由PLS计算回归系数求得模型传递矩阵。实验使用三台光谱仪(S,S1,S2)测得的玉米近红外光谱数据集建立传递模型,数据集1(D1)水分、油分、蛋白质、淀粉成分预测标准偏差(SEP)分别为0.1267、0.0982、0.1569和0.4051,数据集2(D2)四种成分的SEP分别为0.1548、0.0819、0.1366和0.3836,均小于传统方法。实验结果表明本文所提模型传递方法能有效消除光谱噪声,减小主仪器和从仪器光谱之间的差异,提高模型的稳定性和准确性,实现不同仪器之间模型的共享。展开更多
生鲜牛肉的含水率对其牛肉的加工、储藏、贸易与食用质量有重要影响,为了提高牛肉的经济价值和食用品质,需要研究牛肉含水率的无损检测技术。以取自不同超市的内蒙小黄牛和鲁西黄牛背最长肌为研究对象,有效样本86个,其中,75%的样本作为...生鲜牛肉的含水率对其牛肉的加工、储藏、贸易与食用质量有重要影响,为了提高牛肉的经济价值和食用品质,需要研究牛肉含水率的无损检测技术。以取自不同超市的内蒙小黄牛和鲁西黄牛背最长肌为研究对象,有效样本86个,其中,75%的样本作为校正集,25%的样本作为验证集。采集牛肉新鲜切口处400~1170nm波长范围内的漫反射光谱,用国标方法测定牛肉含水率。经过多元散射校正(multiplicative scatter correction,MSC)、变量标准化(standard normalized variate,SNV)和直接正交信号校正(direct orthogonal signal correction,DOSC)等方法预处理,在400~1170nm范围内分别建立多元线性回归(multiple linear regression,MLR)模型、主成分回归(principal component Regression,PCR)模型和偏最小二乘回归(partial least squares regression,PLSR)模型。结果表明使用MSC预处理方法建立的模型预测效果最佳,其中用PLSR建模结果最好,校正集的相关系数和校正标准差分别是0.92和0.0069,验证集的相关系数和验证标准差分别是0.92和0.0047,外部验证的相关系数和验证标准差分别是0.85和0.0054。结果表明,可见/近红外光谱结合MSC预处理方法建立的PLSR模型,可以对牛肉含水率进行准确的快速无损评价,为生鲜牛肉含水率快速无损检测技术的应用提供理论参考。展开更多
文摘高光谱遥感是监测土壤盐渍化的重要手段之一,但野外光谱反射率易受土壤水分的影响,导致盐分监测精度难以保证。为有效消除水分因素,提高土壤含盐量反演精度,该研究以银川平原盐渍化土壤为研究对象,以野外土壤光谱反射率(reflectance,Ref)和实测土壤含盐量为数据源,分析不同含水率的土壤光谱特征,将反射率经过一阶微分(first derivative of reflectance,FDR)、正交信号校正(orthogonal signal correction,OSC)和一阶微分-正交信号校正(first derivative of reflectance-orthogonal signal correction,FDR-OSC)变换,分析各光谱数据与含盐量、含水率的相关性,确定最佳“除水”方法,然后基于支持向量机(support vector machine,SVM)建立土壤含盐量反演模型。结果表明:1)含水率与土壤光谱反射率呈反比,光谱在1430、1950、2200 nm附近存在吸收带,1950 nm附近为最主要吸收波段,且存在向长波漂移的现象。2)光谱数据与含水率相关性由强到弱的顺序为:Ref、OSC、FDR、FDR-OSC;与含盐量相关性由强到弱的顺序为:FDR-OSC、FDR、OSC、Ref。3)基于FDR-OSC“除水”的SVM含盐量模型决定系数R_(c)^(2)、R_(p)^(2)和相对分析误差(relative prediction deviation,RPD)分别达到0.952、0.960和5.04,具有极强的拟合和反演能力。研究结果可为银川平原及同类地区土壤含盐量的精准监测提供科学依据。
文摘为增强近红外光谱模型通用性,解决直接正交信号校正算法在光谱处理过程中可能出现过拟合、模型不稳定的现象,提出一种将随机森林与直接正交信号校正算法相结合的模型传递方法(Random Forest-Direct Orthogonal Signal Correction,RF-DOSC)。该方法首先利用随机森林算法进行近红外光谱波长点筛选,然后采用直接正交信号校正方法进行光谱处理并建立回归方程,由PLS计算回归系数求得模型传递矩阵。实验使用三台光谱仪(S,S1,S2)测得的玉米近红外光谱数据集建立传递模型,数据集1(D1)水分、油分、蛋白质、淀粉成分预测标准偏差(SEP)分别为0.1267、0.0982、0.1569和0.4051,数据集2(D2)四种成分的SEP分别为0.1548、0.0819、0.1366和0.3836,均小于传统方法。实验结果表明本文所提模型传递方法能有效消除光谱噪声,减小主仪器和从仪器光谱之间的差异,提高模型的稳定性和准确性,实现不同仪器之间模型的共享。
文摘生鲜牛肉的含水率对其牛肉的加工、储藏、贸易与食用质量有重要影响,为了提高牛肉的经济价值和食用品质,需要研究牛肉含水率的无损检测技术。以取自不同超市的内蒙小黄牛和鲁西黄牛背最长肌为研究对象,有效样本86个,其中,75%的样本作为校正集,25%的样本作为验证集。采集牛肉新鲜切口处400~1170nm波长范围内的漫反射光谱,用国标方法测定牛肉含水率。经过多元散射校正(multiplicative scatter correction,MSC)、变量标准化(standard normalized variate,SNV)和直接正交信号校正(direct orthogonal signal correction,DOSC)等方法预处理,在400~1170nm范围内分别建立多元线性回归(multiple linear regression,MLR)模型、主成分回归(principal component Regression,PCR)模型和偏最小二乘回归(partial least squares regression,PLSR)模型。结果表明使用MSC预处理方法建立的模型预测效果最佳,其中用PLSR建模结果最好,校正集的相关系数和校正标准差分别是0.92和0.0069,验证集的相关系数和验证标准差分别是0.92和0.0047,外部验证的相关系数和验证标准差分别是0.85和0.0054。结果表明,可见/近红外光谱结合MSC预处理方法建立的PLSR模型,可以对牛肉含水率进行准确的快速无损评价,为生鲜牛肉含水率快速无损检测技术的应用提供理论参考。