期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于EEMD与CNN模型的多标签负荷识别方法
被引量:
5
1
作者
程志友
程安然
+1 位作者
李悦
姜帅
《电工电能新技术》
CSCD
北大核心
2023年第2期88-96,共9页
识别用户用电负荷组成与用电行为是智能电网技术发展的重要研究内容之一。本文提出了一种基于集合经验模态分解(EEMD)结合卷积神经网络(CNN)的多标签负荷识别方法,实现对用户负荷有效的非侵入式监测。首先从检测到事件的聚合测量数据中...
识别用户用电负荷组成与用电行为是智能电网技术发展的重要研究内容之一。本文提出了一种基于集合经验模态分解(EEMD)结合卷积神经网络(CNN)的多标签负荷识别方法,实现对用户负荷有效的非侵入式监测。首先从检测到事件的聚合测量数据中提取单周期电流波形,应用集合经验模态分解将电流分解为两种模态分量,接着应用欧氏距离相似度函数将分解后的电流转化为二维矩阵表示,通过CNN多标签分类器自动提取矩阵的有效特征,最后利用公开数据集对所提出的方法进行了实验验证。结果表明,基于EEMD处理后的负荷识别准确率高,能够有效地实现多标签负荷识别。
展开更多
关键词
集合经验模态分解
卷积神经网络
欧式距离相似度函数
多标签
负荷识别
在线阅读
下载PDF
职称材料
题名
基于EEMD与CNN模型的多标签负荷识别方法
被引量:
5
1
作者
程志友
程安然
李悦
姜帅
机构
教育部电能质量工程研究中心
安徽大学互联网学院
出处
《电工电能新技术》
CSCD
北大核心
2023年第2期88-96,共9页
基金
国家自然科学基金项目(61672032)
安徽省科技重大专项(18030901018)
安徽省自然科学基金项目(2108085QE237)。
文摘
识别用户用电负荷组成与用电行为是智能电网技术发展的重要研究内容之一。本文提出了一种基于集合经验模态分解(EEMD)结合卷积神经网络(CNN)的多标签负荷识别方法,实现对用户负荷有效的非侵入式监测。首先从检测到事件的聚合测量数据中提取单周期电流波形,应用集合经验模态分解将电流分解为两种模态分量,接着应用欧氏距离相似度函数将分解后的电流转化为二维矩阵表示,通过CNN多标签分类器自动提取矩阵的有效特征,最后利用公开数据集对所提出的方法进行了实验验证。结果表明,基于EEMD处理后的负荷识别准确率高,能够有效地实现多标签负荷识别。
关键词
集合经验模态分解
卷积神经网络
欧式距离相似度函数
多标签
负荷识别
Keywords
EEMD
CNN
Euclidean distance similarity function
multi-label
load identification
分类号
TM721 [电气工程—电力系统及自动化]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于EEMD与CNN模型的多标签负荷识别方法
程志友
程安然
李悦
姜帅
《电工电能新技术》
CSCD
北大核心
2023
5
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部