利用WRF(weather research and forecasting)模式模拟资料对2008年06号台风"风神"进行诊断分析,采用准地转PV-ω方程对台风外围中尺度对流系统较强的6月20日10时(世界时)的资料进行分析。通过PV-ω方程诊断了潜热、摩擦及干...利用WRF(weather research and forecasting)模式模拟资料对2008年06号台风"风神"进行诊断分析,采用准地转PV-ω方程对台风外围中尺度对流系统较强的6月20日10时(世界时)的资料进行分析。通过PV-ω方程诊断了潜热、摩擦及干动力过程对台风次级环流的作用,结果显示潜热强迫产生的次级环流最强,摩擦强迫主要集中在边界层,而干动力过程则在台风中心附近产生影响。加入摩擦、潜热得到的准平衡流场能够描述70%左右的台风环流。环境垂直切变在台风中心附近强迫产生横向次级环流的垂直切变与环境垂直切变相反,次级环流会使得台风一侧的上升气流减弱而另一侧上升气流增强,从而使得台风不对称增强。同时,发现垂直切变可能在其最大垂直切变方向右侧激发台风外围中尺度系统。通过构造理想的准平衡的台风及叠加在其上的中尺度系统环流,选择不同的切变和环境平均气流,发现增大切变会使得强迫次级环流增强,而增大环境平均气流不一定能够使得强迫次级环流增大,反而可能使得强迫次级环流减弱。通过诊断发现由切变强迫次级环流造成的中尺度对流系统上方扰动可能是中尺度对流系统持续存在的原因。展开更多
利用常规观测资料、FY-2C卫星云图、NCEP/NCAR再分析资料,对一次西南低涡暴雨过程进行了诊断分析。结果表明,这次暴雨天气过程的主要影响系统有对流层高层南亚高压、中层低涡、低层切变线(低涡)以及台风"天鹅"。该过程是由3...利用常规观测资料、FY-2C卫星云图、NCEP/NCAR再分析资料,对一次西南低涡暴雨过程进行了诊断分析。结果表明,这次暴雨天气过程的主要影响系统有对流层高层南亚高压、中层低涡、低层切变线(低涡)以及台风"天鹅"。该过程是由3个接连发生的中尺度对流云团直接造成的,发生在西南低涡闭合涡旋范围内的非对称处。利用WRF_ARW(The Advanced Research WRF)中尺度模式进行了数值模拟,结果表明,对流层高层南亚高压脊线附近的强辐散、对流层中层低涡的垂直涡度耦合和对流层低层强劲的东风干冷急流与南风暖湿急流在四川盆地内交汇,促使西南低涡发展、加强。对流层高层的强辐散和低层强辐合相配合,有利于西南低涡的增强、发展。温度场上,发展的西南低涡在300hPa附近出现"暖心"结构,在850hPa以下北冷南暖,冷暖空气交界随着高度的增加向北倾斜。低涡中心南北两侧的次级环流圈上升支在低涡中心附近汇合,出现剧烈的上升运动,促使西南低涡增强。随着高层南亚高压的南移、高空急流的南压,高层辐散减弱,西南低涡也减弱。当中层西风大槽主体移过河套地区,其携带的强冷空气沿高原东侧迅速南下,大量冷空气进入四川盆地,促使西南低涡向南移出盆地,最终减弱、填塞。展开更多
文摘利用WRF(weather research and forecasting)模式模拟资料对2008年06号台风"风神"进行诊断分析,采用准地转PV-ω方程对台风外围中尺度对流系统较强的6月20日10时(世界时)的资料进行分析。通过PV-ω方程诊断了潜热、摩擦及干动力过程对台风次级环流的作用,结果显示潜热强迫产生的次级环流最强,摩擦强迫主要集中在边界层,而干动力过程则在台风中心附近产生影响。加入摩擦、潜热得到的准平衡流场能够描述70%左右的台风环流。环境垂直切变在台风中心附近强迫产生横向次级环流的垂直切变与环境垂直切变相反,次级环流会使得台风一侧的上升气流减弱而另一侧上升气流增强,从而使得台风不对称增强。同时,发现垂直切变可能在其最大垂直切变方向右侧激发台风外围中尺度系统。通过构造理想的准平衡的台风及叠加在其上的中尺度系统环流,选择不同的切变和环境平均气流,发现增大切变会使得强迫次级环流增强,而增大环境平均气流不一定能够使得强迫次级环流增大,反而可能使得强迫次级环流减弱。通过诊断发现由切变强迫次级环流造成的中尺度对流系统上方扰动可能是中尺度对流系统持续存在的原因。
文摘利用常规观测资料、FY-2C卫星云图、NCEP/NCAR再分析资料,对一次西南低涡暴雨过程进行了诊断分析。结果表明,这次暴雨天气过程的主要影响系统有对流层高层南亚高压、中层低涡、低层切变线(低涡)以及台风"天鹅"。该过程是由3个接连发生的中尺度对流云团直接造成的,发生在西南低涡闭合涡旋范围内的非对称处。利用WRF_ARW(The Advanced Research WRF)中尺度模式进行了数值模拟,结果表明,对流层高层南亚高压脊线附近的强辐散、对流层中层低涡的垂直涡度耦合和对流层低层强劲的东风干冷急流与南风暖湿急流在四川盆地内交汇,促使西南低涡发展、加强。对流层高层的强辐散和低层强辐合相配合,有利于西南低涡的增强、发展。温度场上,发展的西南低涡在300hPa附近出现"暖心"结构,在850hPa以下北冷南暖,冷暖空气交界随着高度的增加向北倾斜。低涡中心南北两侧的次级环流圈上升支在低涡中心附近汇合,出现剧烈的上升运动,促使西南低涡增强。随着高层南亚高压的南移、高空急流的南压,高层辐散减弱,西南低涡也减弱。当中层西风大槽主体移过河套地区,其携带的强冷空气沿高原东侧迅速南下,大量冷空气进入四川盆地,促使西南低涡向南移出盆地,最终减弱、填塞。