期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于欠完备自编码器的用户用电行为分类分析方法 被引量:9
1
作者 黄奇峰 杨世海 +2 位作者 邓欣宇 陈海文 王守相 《电力工程技术》 2019年第6期24-30,共7页
针对电力大数据背景下用户用电行为复杂多变、分析困难的问题,提出了一种基于欠完备自编码器的用户用电行为分类分析方法。首先,通过欠完备自编码器对智能电表数据进行编码,实现对原始数据的特征抽取,并使用反向传播(BP)神经网络进行用... 针对电力大数据背景下用户用电行为复杂多变、分析困难的问题,提出了一种基于欠完备自编码器的用户用电行为分类分析方法。首先,通过欠完备自编码器对智能电表数据进行编码,实现对原始数据的特征抽取,并使用反向传播(BP)神经网络进行用户用电行为分类分析;然后,对最佳编码比率进行优选,并结合用户的典型用电特征作为神经网络的输入,提高了分类准确率;最后,在爱尔兰智能电表数据集上进行了仿真实验,并与直接使用BP神经网络进行对比,分析表明,文中所提出的用户用电行为分类分析方法不仅可以提高检测准确率,帮助电力公司更好地掌握用户用电规律,辅助需求响应实施,还能显著降低算法的运行时间。 展开更多
关键词 欠完备自编码器 用户用电行为分析 需求响应 特征挖掘 智能用电 智能电表
在线阅读 下载PDF
一种欠完备自编码器调制识别技术 被引量:2
2
作者 张培钺 徐湛 +2 位作者 赵弋洋 陈晋辉 职如昕 《电讯技术》 北大核心 2020年第5期567-571,共5页
基于信号特征进行模式识别的调制识别方法需要先计算信号的高阶特征、高阶累积量再进行模式识别,整体设计复杂,特征不易计算。机器学习技术由于其强大的特征提取能力和分类能力,被广泛应用到模式识别领域中。针对调制识别问题,提出了一... 基于信号特征进行模式识别的调制识别方法需要先计算信号的高阶特征、高阶累积量再进行模式识别,整体设计复杂,特征不易计算。机器学习技术由于其强大的特征提取能力和分类能力,被广泛应用到模式识别领域中。针对调制识别问题,提出了一种基于欠完备自编码器的调制识别技术,使用欠完备自编码器进行调制信号的特征自动提取,再使用神经网络分类器进行分类识别。整体模型更为简洁,运算复杂度较低,有利于部署在硬件上进行实时识别。对常见的BPSK、QPSK、2ASK、2FSK、16QAM数字调制方式进行的识别实验表明,算法在信噪比10 dB时平均识别率高于0.97,并且在信噪比为0 dB时仍然有0.92以上的平均识别率。 展开更多
关键词 认知无线电 调制识别 神经网络 欠完备自编码器 特征提取
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部