期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
环状柔直配网线路的单端量保护原理 被引量:32
1
作者 戴志辉 黄敏 +1 位作者 苏怀波 焦彦军 《中国电机工程学报》 EI CSCD 北大核心 2018年第23期6825-6836,共12页
直流线路故障的快速、可靠识别是多端柔性直流配网发展面临的技术难点之一。针对模块化多电平换流器、电压源换流器共存的环状直流配网的中压直流线路,提出利用附加电感电压的故障识别方法。首先,提出基于模量网络的故障后线路附加电感... 直流线路故障的快速、可靠识别是多端柔性直流配网发展面临的技术难点之一。针对模块化多电平换流器、电压源换流器共存的环状直流配网的中压直流线路,提出利用附加电感电压的故障识别方法。首先,提出基于模量网络的故障后线路附加电感电压初始值计算方法。其次,利用线路附加电感电压初始值在区内、外故障时的差异,实现故障的快速识别;并利用故障极和非故障极上电感电压初始值的差异进行选极。该方案采用单端电气量快速、准确识别故障,无需通信,可靠性高。最后,在PSCAD/ETMDC平台搭建仿真模型,验证所提计算方法的正确性和保护方案的可行性。 展开更多
关键词 直流配电系统 模量网络 单端量保护 附加电感
在线阅读 下载PDF
广义双回线路反向量行波特性新解 被引量:2
2
作者 束洪春 宋晶 田鑫萃 《中国电机工程学报》 EI CSCD 北大核心 2019年第13期3807-3819,共13页
通过理论分析和仿真发现:采用两回线路电流构造得到双回线路反向量电流行波,并非不受双回线路以外的系统接线情况的影响,其故障点反射波和对端母线反射波不仅与故障点过渡电阻有关系,还与两端母线的出线数有关。因此,构建基于行波传播... 通过理论分析和仿真发现:采用两回线路电流构造得到双回线路反向量电流行波,并非不受双回线路以外的系统接线情况的影响,其故障点反射波和对端母线反射波不仅与故障点过渡电阻有关系,还与两端母线的出线数有关。因此,构建基于行波传播路径的双回线路行波分析体系。在该体系下,首次推导出双回线路等长和不等长情况下反向量故障初始行波、故障点反射波以及对端母线反射波的表达式以及得到反向量故障点反射波、对端母线反射波与故障点过渡电阻以及母线端出线的数学关系,并提出基于广义双回线路反向量行波的概念。大量仿真和实测数据表明:基于行波传播路径分析反向量行波特性的正确性。 展开更多
关键词 双回线路 模量网络 行波传播路径 同向量行波 反向量行波 广义反向量行波
在线阅读 下载PDF
基于二次振荡波过程的交流电网相继速动判据 被引量:4
3
作者 吴宇奇 肖澍昱 +2 位作者 黎钊 李正天 林湘宁 《电工技术学报》 EI CSCD 北大核心 2023年第24期6695-6708,共14页
针对现有的交流电网相继速动保护判据的可靠性能受限于运行工况与系统参数,以及其无法耐受较高过渡电阻的难题,该文首先研究了本级线路盲区故障与下级线路故障时由对端断路器开断产生的二次振荡波过程的差异性,并基于行波模量网络分析... 针对现有的交流电网相继速动保护判据的可靠性能受限于运行工况与系统参数,以及其无法耐受较高过渡电阻的难题,该文首先研究了本级线路盲区故障与下级线路故障时由对端断路器开断产生的二次振荡波过程的差异性,并基于行波模量网络分析了特定故障工况下的特殊波过程;然后,提出了基于数学形态学梯度算法的振荡波头极性辨识判据以及特殊故障工况下的辅助判据,以形成全新的相继速动保护判据;最后,基于PSCAD仿真平台验证了所提保护判据的有效性、灵敏性与可靠性,其适用于三相/单相跳闸方式、适应于所有故障类型、不受系统运行工况与系统参数影响,同时耐受过渡电阻能力高达300Ω。 展开更多
关键词 相继速动 二次振荡波 数学形态学梯度 盲区故障 行波模量网络
在线阅读 下载PDF
直流输电线路差动保护新原理 被引量:5
4
作者 苏煜 汤士明 石勇 《电力系统及其自动化学报》 CSCD 北大核心 2022年第10期152-158,共7页
针对直流输电系统的快速发展亟需研究新原理的直流线路保护问题,本文提出一种基于直流电流正、反向行进波构成的直流输电线路差动保护原理。根据对直流线路两端的电流正、反向行进波间关系的分析结果,推导出由本侧电流正、反向行进波得... 针对直流输电系统的快速发展亟需研究新原理的直流线路保护问题,本文提出一种基于直流电流正、反向行进波构成的直流输电线路差动保护原理。根据对直流线路两端的电流正、反向行进波间关系的分析结果,推导出由本侧电流正、反向行进波得到对侧电流正、反向行进波的计算方法,利用同一侧保护安装处电流行进波的计算值与实测值来构造差动保护判据,并给出了保护整定值的选取原则。根据对故障点处与保护安装处地模电流间关系的分析,利用地模电流构造了故障选极判据。理论分析和仿真实验均证明了所提的行进波差动判据对区内外故障具有明确的选择性,选极判据对故障极线路的判别正确。 展开更多
关键词 直流输电线路 行进波差动保护 模量网络 正向行进波 反向行进波
在线阅读 下载PDF
Prediction of resilient modulus for subgrade soils based on ANN approach 被引量:10
5
作者 ZHANG Jun-hui HU Jian-kun +2 位作者 PENG Jun-hui FAN Hai-shan ZHOU Chao 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第3期898-910,共13页
The resilient modulus(MR)of subgrade soils is usually used to characterize the stiffness of subgrade and is a crucial parameter in pavement design.In order to determine the resilient modulus of compacted subgrade soil... The resilient modulus(MR)of subgrade soils is usually used to characterize the stiffness of subgrade and is a crucial parameter in pavement design.In order to determine the resilient modulus of compacted subgrade soils quickly and accurately,an optimized artificial neural network(ANN)approach based on the multi-population genetic algorithm(MPGA)was proposed in this study.The MPGA overcomes the problems of the traditional ANN such as low efficiency,local optimum and over-fitting.The developed optimized ANN method consists of ten input variables,twenty-one hidden neurons,and one output variable.The physical properties(liquid limit,plastic limit,plasticity index,0.075 mm passing percentage,maximum dry density,optimum moisture content),state variables(degree of compaction,moisture content)and stress variables(confining pressure,deviatoric stress)of subgrade soils were selected as input variables.The MR was directly used as the output variable.Then,adopting a large amount of experimental data from existing literature,the developed optimized ANN method was compared with the existing representative estimation methods.The results show that the developed optimized ANN method has the advantages of fast speed,strong generalization ability and good accuracy in MR estimation. 展开更多
关键词 resilient modulus subgrade soils artificial neural network multi-population genetic algorithm prediction method
在线阅读 下载PDF
Risk-based water quality decision-making under small data using Bayesian network 被引量:3
6
作者 张庆庆 许月萍 +1 位作者 田烨 张徐杰 《Journal of Central South University》 SCIE EI CAS 2012年第11期3215-3224,共10页
A knowledge-based network for Section Yidong Bridge,Dongyang River,one tributary of Qiantang River,Zhejiang Province,China,is established in order to model water quality in areas under small data.Then,based on normal ... A knowledge-based network for Section Yidong Bridge,Dongyang River,one tributary of Qiantang River,Zhejiang Province,China,is established in order to model water quality in areas under small data.Then,based on normal transformation of variables with routine monitoring data and normal assumption of variables without routine monitoring data,a conditional linear Gaussian Bayesian network is constructed.A "two-constraint selection" procedure is proposed to estimate potential parameter values under small data.Among all potential parameter values,the ones that are most probable are selected as the "representatives".Finally,the risks of pollutant concentration exceeding national water quality standards are calculated and pollution reduction decisions for decision-making reference are proposed.The final results show that conditional linear Gaussian Bayesian network and "two-constraint selection" procedure are very useful in evaluating risks when there is limited data and can help managers to make sound decisions under small data. 展开更多
关键词 water quality risk pollution reduction decisions Bayesian network conditional linear Gaussian Model small data
在线阅读 下载PDF
Mapping methods for output-based objective speech quality assessment using data mining 被引量:2
7
作者 王晶 赵胜辉 +1 位作者 谢湘 匡镜明 《Journal of Central South University》 SCIE EI CAS 2014年第5期1919-1926,共8页
Objective speech quality is difficult to be measured without the input reference speech.Mapping methods using data mining are investigated and designed to improve the output-based speech quality assessment algorithm.T... Objective speech quality is difficult to be measured without the input reference speech.Mapping methods using data mining are investigated and designed to improve the output-based speech quality assessment algorithm.The degraded speech is firstly separated into three classes(unvoiced,voiced and silence),and then the consistency measurement between the degraded speech signal and the pre-trained reference model for each class is calculated and mapped to an objective speech quality score using data mining.Fuzzy Gaussian mixture model(GMM)is used to generate the artificial reference model trained on perceptual linear predictive(PLP)features.The mean opinion score(MOS)mapping methods including multivariate non-linear regression(MNLR),fuzzy neural network(FNN)and support vector regression(SVR)are designed and compared with the standard ITU-T P.563 method.Experimental results show that the assessment methods with data mining perform better than ITU-T P.563.Moreover,FNN and SVR are more efficient than MNLR,and FNN performs best with 14.50% increase in the correlation coefficient and 32.76% decrease in the root-mean-square MOS error. 展开更多
关键词 objective speech quality data mining multivariate non-linear regression fuzzy neural network support vector regression
在线阅读 下载PDF
Soft measurement model of ring's dimensions for vertical hot ring rolling process using neural networks optimized by genetic algorithm 被引量:2
8
作者 汪小凯 华林 +3 位作者 汪晓旋 梅雪松 朱乾浩 戴玉同 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第1期17-29,共13页
Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ri... Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ring's position is asymmetrical.All of these cause that the ring's dimensions cannot be measured directly.Through analyzing the relationships among the dimensions of ring blanks,the positions of rolls and the ring's inner and outer diameter,the soft measurement model of ring's dimensions is established based on the radial basis function neural network(RBFNN).A mass of data samples are obtained from VHRR finite element(FE) simulations to train and test the soft measurement NN model,and the model's structure parameters are deduced and optimized by genetic algorithm(GA).Finally,the soft measurement system of ring's dimensions is established and validated by the VHRR experiments.The ring's dimensions were measured artificially and calculated by the soft measurement NN model.The results show that the calculation values of GA-RBFNN model are close to the artificial measurement data.In addition,the calculation accuracy of GA-RBFNN model is higher than that of RBFNN model.The research results suggest that the soft measurement NN model has high precision and flexibility.The research can provide practical methods and theoretical guidance for the accurate measurement of VHRR process. 展开更多
关键词 vertical hot ring rolling dimension precision soft measurement model artificial neural network genetic algorithm
在线阅读 下载PDF
Regression model for daily passenger volume of high-speed railway line under capacity constraint 被引量:2
9
作者 骆泳吉 刘军 +1 位作者 孙迅 赖晴鹰 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第9期3666-3676,共11页
A non-linear regression model is proposed to forecast the aggregated passenger volume of Beijing-Shanghai high-speed railway(HSR) line in China. Train services and temporal features of passenger volume are studied to ... A non-linear regression model is proposed to forecast the aggregated passenger volume of Beijing-Shanghai high-speed railway(HSR) line in China. Train services and temporal features of passenger volume are studied to have a prior knowledge about this high-speed railway line. Then, based on a theoretical curve that depicts the relationship among passenger demand, transportation capacity and passenger volume, a non-linear regression model is established with consideration of the effect of capacity constraint. Through experiments, it is found that the proposed model can perform better in both forecasting accuracy and stability compared with linear regression models and back-propagation neural networks. In addition to the forecasting ability, with a definite formation, the proposed model can be further used to forecast the effects of train planning policies. 展开更多
关键词 high-speed rail Jinghu high-speed railway(HSR) DEMAND capacity forecasting
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部