期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
二维Burgers方程的有限体积元方法数值模拟 被引量:1
1
作者 张才杰 杨青 《科学技术与工程》 2011年第2期238-241,共4页
基于有限体积元方法的思想,考虑二维Burgers问题的半离散有限体积元方法,证明格式的收敛性质,得到最优的H1-模误差估计。
关键词 BURGERS方程 有限体积元方法 H1-模误差估计 半离散格式
在线阅读 下载PDF
水污染问题特征有限元方法的数值计算及理论分析 被引量:2
2
作者 王焕 《应用数学》 CSCD 北大核心 2003年第2期42-49,共8页
本文研究了水污染二维对流占优数学模型特征有限元方法的计算问题 ,导出的计算格式对时间变量用特征线方法离散 ,对空间变量用Galerkin有限元方法离散 ,得到的H1 模和L2
关键词 水污染 特征有限元方法 数值计算 H^1-模误差估计 L^2-模误差估计 离散Galerkin引理 特征线法 GALERKIN有限元法
在线阅读 下载PDF
广义神经传播方程新的混合三角形元格式 被引量:2
3
作者 石东洋 陈金环 林红玲 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第5期1-5,共5页
首先将一个各向异性线性三角形元应用到广义神经传播方程,建立了一个新混合元格式,利用单元上插值、平均值和导数转嫁技巧,在不需要引入传统广义椭圆投影的前提下,给出了相关未知量的L2-模误差估计;其次,将其推广到任意阶格式的情形.
关键词 广义神经传播方程 各向异性 新混合元格式 L2-模误差估计
在线阅读 下载PDF
解一阶双曲问题间断有限元方法的超收敛性质 被引量:1
4
作者 张铁 李铮 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第1期149-152,共4页
研究求解一阶双曲问题的间断有限元方法并分析方法的稳定性和收敛性.对于k次间断有限元,利用对偶论证技术建立了在求解区域和某些子区域上的负模误差估计.利用负模误差估计进一步证明了间断有限元解在这些区域和它们的流出边界上均值逼... 研究求解一阶双曲问题的间断有限元方法并分析方法的稳定性和收敛性.对于k次间断有限元,利用对偶论证技术建立了在求解区域和某些子区域上的负模误差估计.利用负模误差估计进一步证明了间断有限元解在这些区域和它们的流出边界上均值逼近具有O(h2k+1/2)阶超收敛性质.数值实例验证了理论分析结果. 展开更多
关键词 一阶双曲问题 间断有限元方法 稳定性和收敛性 模误差估计 超收敛性
在线阅读 下载PDF
拟线性Sobolev方程的特征有限元格式的交替方向预处理迭代解及其分析
5
作者 陈蔚 《数学物理学报(A辑)》 CSCD 北大核心 2001年第2期201-210,共10页
考虑数值求解具有对流项的高维拟线性Sobolev方程.构造了特征有限元格式,提出用交替方向预处理迭代法求特征有限元格式在每一时间步所产生的代数方程组的近似解,整个计算过程仅对一个可方向交替的预处理矩阵求逆一次,大大降... 考虑数值求解具有对流项的高维拟线性Sobolev方程.构造了特征有限元格式,提出用交替方向预处理迭代法求特征有限元格式在每一时间步所产生的代数方程组的近似解,整个计算过程仅对一个可方向交替的预处理矩阵求逆一次,大大降低了计算量.证明了迭代解的最佳L2-模误差估计,并给出了算法的拟优工作量估计. 展开更多
关键词 特征有限元 交替方向 预处理迭代 拟线性 Soblev方程 数值求解 L^2-模误差估计
在线阅读 下载PDF
双曲型积分-微分方程的有限体积元方法 被引量:5
6
作者 赵继超 张铁 《应用数学》 CSCD 北大核心 2003年第3期122-127,共6页
本文研究了双曲型积分 微分方程的有限体积元方法 ,利用基于有限体积元的Ritz Volterra投影的逼近性质 ,得到了半离散有限体积元解的最优阶L2 ,H1,L∞ 和W1,∞
关键词 双曲型积分-微分方程 有限体积元方法 Ritz-Volterra投影 模误差估计 最优阶 初边值问题
在线阅读 下载PDF
一类非线性对流-扩散问题的特征-差分法
7
作者 张秀艳 《河北大学学报(自然科学版)》 CAS 1996年第1期15-21,共7页
本文研究了一类具有Dirichlet边界的一维非线性对流-扩散问题的特征-差分解法,给出了其特征-差分格式的L2模最佳收敛阶估计。
关键词 模误差估计 对流-扩散问题 非线性 特征-差分法
全文增补中
3-D direct current resistivity forward modeling by adaptive multigrid finite element method 被引量:9
8
作者 汤井田 王飞燕 +1 位作者 任政勇 郭荣文 《Journal of Central South University》 SCIE EI CAS 2010年第3期587-592,共6页
Based on the fact that 3-D model discretization by artificial could not always be successfully implemented especially for large-scaled problems when high accuracy and efficiency were required, a new adaptive multigrid... Based on the fact that 3-D model discretization by artificial could not always be successfully implemented especially for large-scaled problems when high accuracy and efficiency were required, a new adaptive multigrid finite element method was proposed. In this algorithm, a-posteriori error estimator was employed to generate adaptively refined mesh on a given initial mesh. On these iterative meshes, V-cycle based multigrid method was adopted to fast solve each linear equation with each initial iterative term interpolated from last mesh. With this error estimator, the unknowns were nearly optimally distributed on the final mesh which guaranteed the accuracy. The numerical results show that the multigrid solver is faster and more stable compared with ICCG solver. Meanwhile, the numerical results obtained from the final model discretization approximate the analytical solutions with maximal relative errors less than 1%, which remarkably validates this algorithm. 展开更多
关键词 adaptive multigrid a-posteriori error estimator unstructured mesh V-CYCLE finite element method
在线阅读 下载PDF
A practical robust nonlinear controller for maglev levitation system 被引量:5
9
作者 李金辉 李杰 张耿 《Journal of Central South University》 SCIE EI CAS 2013年第11期2991-3001,共11页
In order to explore the precise dynamic response of the maglev train and verify the validity of proposed controller,a maglev guideway-electromagnet-air spring-cabin coupled model is developed in the first step.Based o... In order to explore the precise dynamic response of the maglev train and verify the validity of proposed controller,a maglev guideway-electromagnet-air spring-cabin coupled model is developed in the first step.Based on the coupled model,the stresses of the modules are analyzed,and it is pointed out that the inherent nonlinearity,the inner coupling,misalignments between the sensors and actuators,and external disturbances are the main issues that should be considered for the maglev engineering.Furthermore,a feedback linearization controller based on the mathematical model of a maglev module is derived,in which the nonlinearity,coupling and misalignments are taken into account.Then,to attenuate the effect of external disturbances,a disturbance observer is proposed and the dynamics of the estimation error is analyzed using the input-to-state stability theory.It shows that the error is negligible under a low-frequency disturbance.However,at the high-frequency range,the error is unacceptable and the disturbances can not be compensated in time,which lead to over designed fluctuations of levitation gap,even a clash between the upper surface of electromagnet and lower surface of guideway.To solve this problem,a novel nonlinear acceleration feedback is put forward to enhancing the attenuation ability of fast varying disturbances.Finally,numerical comparisons show that the proposed controller outperforms the traditional feedback linearization controller and maintains good robustness under disturbances. 展开更多
关键词 dynamic robust nonlinear DECOUPLING separation levitation system MAGLEV
在线阅读 下载PDF
Performance of cumulant-based rank reduction estimator in presence of unexpected modeling errors
10
作者 王鼎 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期992-1001,共10页
Compared with the rank reduction estimator(RARE) based on second-order statistics(called SOS-RARE), the RARE based on fourth-order cumulants(referred to as FOC-RARE) can handle more sources and restrain the negative i... Compared with the rank reduction estimator(RARE) based on second-order statistics(called SOS-RARE), the RARE based on fourth-order cumulants(referred to as FOC-RARE) can handle more sources and restrain the negative impacts of the Gaussian colored noise. However, the unexpected modeling errors appearing in practice are known to significantly degrade the performance of the RARE. Therefore, the direction-of-arrival(DOA) estimation performance of the FOC-RARE is quantitatively derived. The explicit expression for direction-finding(DF) error is derived via the first-order perturbation analysis, and then the theoretical formula for the mean square error(MSE) is given. Simulation results demonstrate the validation of the theoretical analysis and reveal that the FOC-RARE is more robust to the unexpected modeling errors than the SOS-RARE. 展开更多
关键词 fourth-order cumulants(FOC) rank reduction estimator(RARE) modeling error mean square error(MSE)
在线阅读 下载PDF
Resolution performance analysis of cumulants-based rank reduction estimator in presence of unexpected modeling errors
11
作者 王鼎 吴瑛 《Journal of Central South University》 SCIE EI CAS 2013年第11期3116-3130,共15页
Compared to the rank reduction estimator (RARE) based on second-order statistics (called SOS-RARE), the RARE employing fourth-order cumulants (referred to as FOC-RARE) is capable of dealing with more sources and... Compared to the rank reduction estimator (RARE) based on second-order statistics (called SOS-RARE), the RARE employing fourth-order cumulants (referred to as FOC-RARE) is capable of dealing with more sources and mitigating the negative influences of the Gaussian colored noise. However, in the presence of unexpected modeling errors, the resolution behavior of the FOC-RARE also deteriorate significantly as SOS-RARE, even for a known array covariance matrix. For this reason, the angle resolution capability of the FOC-RARE was theoretically analyzed. Firstly, the explicit formula for the mathematical expectation of the FOC-RARE spatial spectrum was derived through the second-order perturbation analysis method. Then, with the assumption that the unexpected modeling errors were drawn from complex circular Gaussian distribution, the theoretical formulas for the angle resolution probability of the FOC-RARE were presented. Numerical experiments validate our analytical results and demonstrate that the FOC-RARE has higher robustness to the unexpected modeling en'ors than that of the SOS-RARE from the resolution point of view. 展开更多
关键词 performance analysis rank reduction estimator (RARE) fourth-order cumulants (FOC) spatial spectrum angle resolution probability unexpected modeling errors
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部