期刊文献+
共找到943篇文章
< 1 2 48 >
每页显示 20 50 100
基于新的相异度量的模糊K-Modes聚类算法 被引量:5
1
作者 白亮 曹付元 梁吉业 《计算机工程》 CAS CSCD 北大核心 2009年第16期192-194,共3页
传统的模糊K-Modes聚类算法采用简单匹配方法度量对象与Mode之间的相异程度,没有充分考虑Mode对类的代表程度,容易造成信息的丢失,弱化了类内的相似性。针对上述问题,通过对象对类的隶属度反映Mode对类的代表程度,提出一种新的相异度量... 传统的模糊K-Modes聚类算法采用简单匹配方法度量对象与Mode之间的相异程度,没有充分考虑Mode对类的代表程度,容易造成信息的丢失,弱化了类内的相似性。针对上述问题,通过对象对类的隶属度反映Mode对类的代表程度,提出一种新的相异度量,并将它应用于传统的模糊K-Modes聚类算法。与传统的K-Modes和模糊K-Modes聚类算法相比,该相异度量是有效的。 展开更多
关键词 模糊K—Modes算法 相异度量 中心
在线阅读 下载PDF
基于区块链与模糊聚类算法的区域大数据分析技术研究
2
作者 何颖 《现代电子技术》 北大核心 2025年第6期52-56,共5页
金融数据具备非线性、高维度的特点,同时对安全性有较高的要求。文中结合区块链技术和模糊聚类算法,提出一种面向区域互联网金融的异常数据分析模型,该模型由异常数据分析算法和隐私保护算法组成。异常数据分析算法针对模糊均值聚类算... 金融数据具备非线性、高维度的特点,同时对安全性有较高的要求。文中结合区块链技术和模糊聚类算法,提出一种面向区域互联网金融的异常数据分析模型,该模型由异常数据分析算法和隐私保护算法组成。异常数据分析算法针对模糊均值聚类算法处理高维非线性数据能力弱的缺点,使用深度信念网络进行改进,进而提升模型的数据处理能力。隐私保护使用差分隐私保护算法,在不利用背景知识的前提下完成数据的保护,同时保证了数据的可用性。在实验测试中,将所提模糊聚类算法与常用的主流K-Means算法、DPC算法进行了对比,结果表明:所提算法的性能在所有对比算法中最优;与此同时,加入隐私保护算法后对聚类结果的影响保持在0.021以内,充分证明了该算法性能的优越性。 展开更多
关键词 模糊算法 区块链技术 异常数据识别 深度信念网络 差分隐私保护算法 区域数据分析
在线阅读 下载PDF
一种基于粗糙熵的改进K-modes聚类算法
3
作者 刘财辉 曾雄 谢德华 《南京理工大学学报》 CAS CSCD 北大核心 2024年第3期335-341,共7页
K-modes聚类算法被广泛应用于人工智能、数据挖掘等领域。传统的K-modes聚类算法有不错的聚类效果,但是存在迭代次数多、计算量大、容易受到冗余属性的干扰等问题,且仅采用简单的0-1匹配的方法来定义2个样本属性值之间的距离,没有充分... K-modes聚类算法被广泛应用于人工智能、数据挖掘等领域。传统的K-modes聚类算法有不错的聚类效果,但是存在迭代次数多、计算量大、容易受到冗余属性的干扰等问题,且仅采用简单的0-1匹配的方法来定义2个样本属性值之间的距离,没有充分考虑每个属性对聚类结果的影响。针对上述问题,该文将粗糙熵引入K-modes算法。首先利用粗糙集属性约简算法消除冗余属性,确定各属性的重要程度;然后利用粗糙熵确定每个属性的权重,从而定义新的类内距离。将该文所提算法与传统的K-modes聚类算法分别在4组公开数据集上进行对比试验。试验结果表明,该文所提算法聚类准确率比传统的K-modes聚类算法更高。 展开更多
关键词 k-modes算法 粗糙集 粗糙熵 属性约简 权重
在线阅读 下载PDF
基于离散小波变换和模糊K-modes的负荷聚类算法 被引量:25
4
作者 张江林 张亚超 +2 位作者 洪居华 高红均 刘俊勇 《电力自动化设备》 EI CSCD 北大核心 2019年第2期100-106,122,共8页
为了研究智能电网背景下用户的用电模式,考虑到现有聚类算法的不足,提出了一种基于离散小波变换的模糊K-modes聚类算法。利用离散小波变换将时域的负荷曲线转换到频域,从而将负荷曲线的不同特征隔离在不同的频域水平,并利用低阶近似的... 为了研究智能电网背景下用户的用电模式,考虑到现有聚类算法的不足,提出了一种基于离散小波变换的模糊K-modes聚类算法。利用离散小波变换将时域的负荷曲线转换到频域,从而将负荷曲线的不同特征隔离在不同的频域水平,并利用低阶近似的思想选取原始曲线的有效分量曲线;对所选的分量曲线进行趋势编码,将连续负荷数据转化为离散类属性数据;基于平均密度确定初始聚类条件,利用模糊K-modes聚类算法对曲线进行形态聚类,得到负荷曲线模板;将所提算法与传统K-means算法及层次聚类算法进行比较,从而验证了所提算法的有效性。 展开更多
关键词 智能电网 负荷 离散小波变换 模糊k-modes聚类算法 用电模式
在线阅读 下载PDF
改进模糊聚类语义分割声环境功能区划图
5
作者 曾宇 姚琨 秦勤 《噪声与振动控制》 北大核心 2025年第2期210-215,共6页
声环境功能区划多采用地理信息系统进行研究,但公开发布的声环境功能区划方案中的文字和图片无法直接用于地理信息系统分析。首先提出改进模糊C均值聚类超像素方法,对声环境功能区划图进行语义分割以获取声功能区信息。接着采用简单线... 声环境功能区划多采用地理信息系统进行研究,但公开发布的声环境功能区划方案中的文字和图片无法直接用于地理信息系统分析。首先提出改进模糊C均值聚类超像素方法,对声环境功能区划图进行语义分割以获取声功能区信息。接着采用简单线性迭代聚类构建超像素,提取声环境功能区划图特征矩阵,基于K-means++改进模糊C均值聚类算法,语义分割超像素粒化的声环境功能区划图,并以声功能区面积占比计算结果偏差为评价指标,分析超像素尺度对分割结果的影响。然后基于不同图像特征矩阵构建方法和聚类中心初始化方法,使用模糊C均值聚类、高斯混合模型聚类、K-medoids聚类语义分割声环境功能区划图,最后比较不同组合方案的声功能区面积占比计算结果偏差,验证方法的有效性。 展开更多
关键词 声学 声环境功能区划图 彩色图像分割 模糊C均值 简单线性迭代 K-means++算法
在线阅读 下载PDF
基于VMD和FCM聚类算法的海上风机支撑结构损伤识别方法
6
作者 任义建 刁延松 +1 位作者 吕建达 侯敬儒 《振动与冲击》 北大核心 2025年第8期184-191,286,共9页
利用响应和有监督学习算法对运行状态下海上风机支撑结构进行损伤识别时,会遇到响应中能量占比很高的谐波成分影响和有监督学习算法需人工定义标签等问题。为此,利用变分模态分解(variational modal decomposition,VMD)和模糊C均值(fuzz... 利用响应和有监督学习算法对运行状态下海上风机支撑结构进行损伤识别时,会遇到响应中能量占比很高的谐波成分影响和有监督学习算法需人工定义标签等问题。为此,利用变分模态分解(variational modal decomposition,VMD)和模糊C均值(fuzzy C-means,FCM)聚类算法进行海上风机支撑结构损伤识别。为剔除响应中的谐波成分,首先利用VMD对加速度响应进行分解,选取结构模态响应(仅含有结构自振频率)作为分析信号。然后计算模态响应的时域、能量和能量比值及样本熵特征构造特征矩阵,利用主成分分析对特征矩阵进行降维,得到损伤特征矩阵。将损伤特征矩阵输入FCM聚类算法,通过聚类分析得到结构的损伤状态。位移激励下海上风机支撑结构损伤识别模型试验数据验证了该方法的有效性。该方法属于无监督学习算法,无需标注标签且不受谐波成分的影响。 展开更多
关键词 海上风机支撑结构 损伤识别 变分模态分解(VMD) 模糊C均值(FCM)算法 无监督学习算法
在线阅读 下载PDF
基于改进模糊C均值聚类与SMO算法的地铁轨道健康状态评价 被引量:2
7
作者 许以凯 杨艺 +2 位作者 张明凯 赵才友 万壮 《铁道标准设计》 北大核心 2024年第11期53-59,共7页
轨道健康状态评价技术对于保障列车的运行安全与乘客的舒适性有重要意义,为寻求一种新的轨道设备综合评价方法,实现对轨道健康状态的科学评价,提出一种基于改进模糊C均值聚类和序列最小优化算法(SMO)构建轨道健康状态评估分析模型。该... 轨道健康状态评价技术对于保障列车的运行安全与乘客的舒适性有重要意义,为寻求一种新的轨道设备综合评价方法,实现对轨道健康状态的科学评价,提出一种基于改进模糊C均值聚类和序列最小优化算法(SMO)构建轨道健康状态评估分析模型。该模型首先提出包含轨道几何状态和结构状态的综合评价指标体系;其次采用变异系数法计算评价指标的权重系数并代入模糊C均值聚类法,得到各轨道样本的分类结果;在此基础上,再利用序列最小优化算法通过划分数据对轨道健康状态进行评价;最后通过实例分析对该评价模型进行验证并开展研究。研究结果表明,经模型评价的855个轨道单元评价结果中优良比例为94%,预测效果良好,平均误差为5%,进而验证了该模型的指标体系和评价方法的科学性和合理性,并给出了进一步研究优化的方向。本文对各轨道指标统筹综合评价,为地铁轨道工务管理线路质量评价提供一种新思路,使轨道设备管理变得有序可控,减少人力、物力资源的浪费。 展开更多
关键词 地铁 轨道 健康状态评价 变异系数法 模糊C均值 SMO算法
在线阅读 下载PDF
改进RHGSO-FC算法的RGB-D图像GMM聚类分割
8
作者 郭培岩 范九伦 刘恒 《计算机工程与应用》 北大核心 2025年第2期234-246,共13页
随着低成本深度图像传感器的引入,在RGB-D图像中进行可靠的图像分割是计算机视觉的一个目标,而如何对杂乱的场景进行图像分割具有挑战性。基于随机亨利气体溶解度优化算法的模糊聚类(RHGSO-FC),提出一种新的RGB-D图像分割方法。对亨利... 随着低成本深度图像传感器的引入,在RGB-D图像中进行可靠的图像分割是计算机视觉的一个目标,而如何对杂乱的场景进行图像分割具有挑战性。基于随机亨利气体溶解度优化算法的模糊聚类(RHGSO-FC),提出一种新的RGB-D图像分割方法。对亨利气体溶解度优化算法(HGSO)进行改进,提出改进的亨利气体溶解度优化算法(LRHGSO),并利用基于改进亨利气体溶解度优化算法的核模糊聚类(LRHGSO-KFC)生成初始化标签。将初始化标签传入到高斯混合(GMM)聚类中,得到多个聚类结果。最后对这些聚类结果通过聚集超像素方法进行分割合并,得到最终分割结果。实验数据集采用NYU depth V2室内图像,与现有的一些分割方法:阈值分割算法、硬C-均值、模糊C-均值、高斯混合聚类、核模糊聚类、模糊子空间聚类、混沌Kbest引力搜索算法和随机亨利气体溶解度优化算法进行比较,结果表明提出的RGB-D分割算法优于其他比较的算法。 展开更多
关键词 RGB-D图像分割 模糊 亨利气体溶解度优化算法 高斯混合模型 集超像素
在线阅读 下载PDF
基于粗糙集的改进K-Modes聚类算法 被引量:15
9
作者 白亮 梁吉业 曹付元 《计算机科学》 CSCD 北大核心 2009年第1期162-164,176,共4页
传统的K-Modes算法采用简单匹配的方法来计算对象之间的距离,并没有充分考虑同一属性下的两个不同值之间的相似性。基于粗糙集中的上、下近似,提出了一种新的距离度量,并重新定义了类中心,对传统K-Modes算法进行了改进。与其他改进K-Mo... 传统的K-Modes算法采用简单匹配的方法来计算对象之间的距离,并没有充分考虑同一属性下的两个不同值之间的相似性。基于粗糙集中的上、下近似,提出了一种新的距离度量,并重新定义了类中心,对传统K-Modes算法进行了改进。与其他改进K-Modes算法进行了比较,实验结果表明,基于粗糙集的改进K-Modes算法有效地提高了聚类精度。 展开更多
关键词 算法 粗糙集 距离度量 k-modes算法
在线阅读 下载PDF
模糊K-Modes聚类精确度分析 被引量:14
10
作者 赵恒 杨万海 《计算机工程》 CAS CSCD 北大核心 2003年第12期27-28,175,共3页
模糊K-Modes聚类算法是对具有分类属性的数据进行聚类的一种有效的算法。为了评价聚类结果,以具有明确分类结构的数据作为输入数据,将模糊K-Modes聚类结果与原始数据的分类结构进行对比,分析了确定它们之间对应关系的方法,在期望聚... 模糊K-Modes聚类算法是对具有分类属性的数据进行聚类的一种有效的算法。为了评价聚类结果,以具有明确分类结构的数据作为输入数据,将模糊K-Modes聚类结果与原始数据的分类结构进行对比,分析了确定它们之间对应关系的方法,在期望聚类结果应该具有的特点的基础上,对现有的精确度定义和计算方法进行修正,在划分相似度的基础上,重新定义模糊K-Modes聚类精确度。 展开更多
关键词 模糊k-modes 精确度 属性 相似度
在线阅读 下载PDF
基于分类型矩阵对象数据的MD fuzzy k-modes聚类算法 被引量:10
11
作者 李顺勇 张苗苗 曹付元 《计算机研究与发展》 EI CSCD 北大核心 2019年第6期1325-1337,共13页
传统的聚类算法一般是对单值属性数据进行聚类.但在许多实际应用中,每个对象通常被多个特征向量所描述.例如,顾客在购物时可能同时购买多个产品.由多个特征向量描述的对象称为矩阵对象,由矩阵对象构成的数据集称为矩阵对象数据集.目前,... 传统的聚类算法一般是对单值属性数据进行聚类.但在许多实际应用中,每个对象通常被多个特征向量所描述.例如,顾客在购物时可能同时购买多个产品.由多个特征向量描述的对象称为矩阵对象,由矩阵对象构成的数据集称为矩阵对象数据集.目前,针对矩阵对象数据聚类算法的研究相对较少,还有很多问题有待解决.利用fuzzy k-modes算法的聚类过程,提出一种基于矩阵对象数据的matrix-object data fuzzy k-modes(MD fuzzy k-modes)聚类算法.该算法结合模糊集的概念引入模糊因子β,重新定义了矩阵对象间的相异性度量,并给出类中心的启发式更新算法.最后,在5个真实数据集上验证了MD fuzzy k-modes算法的有效性,并分析了模糊因子β与隶属度w之间的关系.大数据时代,利用MD fuzzy k-modes算法对多条记录进行聚类,能更易发现顾客的消费偏好,从而做出更有针对性的推荐. 展开更多
关键词 矩阵对象数据 MD FUZZY k-modes算法 相异性度量 中心
在线阅读 下载PDF
基于模糊逻辑COOT优化K调和均值的数据聚类算法 被引量:1
12
作者 戴峦岳 梁宵月 +1 位作者 王帅 王震坡 《广西科学》 北大核心 2024年第5期900-911,共12页
针对K调和均值(K-Harmonic Means, KHM)聚类算法易陷入局部最优的不足,本文结合KHM聚类算法的快速局部开发和白骨顶鸡优化算法(Coot optimization algorithm, COOT)的全局勘探能力,提出一种模糊逻辑COOT优化KHM的数据聚类算法(Fuzzy COO... 针对K调和均值(K-Harmonic Means, KHM)聚类算法易陷入局部最优的不足,本文结合KHM聚类算法的快速局部开发和白骨顶鸡优化算法(Coot optimization algorithm, COOT)的全局勘探能力,提出一种模糊逻辑COOT优化KHM的数据聚类算法(Fuzzy COOT K-Harmonic Means, FCOOTKHM)。将KHM聚类算法生成的初始聚类解输入白骨顶鸡初始种群结构再进行迭代寻优。同时,为了进一步提升COOT的搜索精度,设计模糊逻辑对COOT的收敛因子和领导者种群占比进行自适应调整,均衡算法的搜索与开发能力。使用聚类调和平均值评估种群个体的适应度,结合智能算法启发式搜索对聚类结果迭代寻优。利用加州大学欧文分校(University of California Irvine, UCI)数据库中的7个数据集对FCOOTKHM的聚类性能进行验证分析。结果表明,FCOOTKHM在准确率、精确度、召回率、F度量、Kappa系数和收敛效率等指标上均表现更好,该算法能够实现更精确的数据聚类。 展开更多
关键词 模糊逻辑 模糊系统 白骨顶鸡优化算法 K调和均值 收敛性
在线阅读 下载PDF
基于自适应近邻信息的模糊C均值聚类算法 被引量:2
13
作者 高云龙 李建鹏 +3 位作者 郑兴莘 邵桂芳 祝青园 曹超 《光学精密工程》 EI CAS CSCD 北大核心 2024年第7期1045-1058,共14页
传统的模糊C均值算法直接基于原始数据进行聚类,数据的内在结构可能会被噪声、异常值或其他因素破坏,因此聚类性能会受到影响。为提升FCM算法的鲁棒性,提出了一种基于自适应近邻信息的模糊C均值聚类算法。近邻信息指的是一种基于数据点... 传统的模糊C均值算法直接基于原始数据进行聚类,数据的内在结构可能会被噪声、异常值或其他因素破坏,因此聚类性能会受到影响。为提升FCM算法的鲁棒性,提出了一种基于自适应近邻信息的模糊C均值聚类算法。近邻信息指的是一种基于数据点之间相似度的度量,每个数据点都可以看作其他数据点的近邻,但是不同数据点之间的相似度是不同的。将样本点的近邻信息GX和类中心点的近邻信息GV融入基础FCM模型中,为聚类过程提供更多的数据结构信息,用于指导聚类算法中的簇划分过程,以提升算法的稳定性,并提出了3个迭代算法求解本文提出的聚类模型。与其他先进聚类算法对比,在部分基准数据集上聚类性能有10%以上的提升,同时还从参数敏感性、收敛性、消融实验等方面对算法进行评价。实验结果可以充分显示本文提出的聚类算法的可行性与有效性。 展开更多
关键词 模糊C均值 自适应近邻 算法鲁棒性 迭代算法
在线阅读 下载PDF
基于快速鲁棒模糊C有序均值聚类的苗族服饰图像分割算法
14
作者 陈阳 黄成泉 +3 位作者 雷欢 彭家磊 覃小素 周丽华 《毛纺科技》 CAS 北大核心 2024年第8期81-89,共9页
苗族服饰图像具有绣线纹理复杂、色彩形状多样等特征,针对模糊C有序均值(Fuzzy C-Ordered-Means,FCOM)聚类算法在进行苗族服饰图像分割时,存在耗时长、分割效果不理想的问题,提出了一种快速鲁棒模糊C有序均值聚类算法。在FCOM算法基础... 苗族服饰图像具有绣线纹理复杂、色彩形状多样等特征,针对模糊C有序均值(Fuzzy C-Ordered-Means,FCOM)聚类算法在进行苗族服饰图像分割时,存在耗时长、分割效果不理想的问题,提出了一种快速鲁棒模糊C有序均值聚类算法。在FCOM算法基础上加入了竞争学习的思想,通过构造新的隶属度约束函数,对像素点进行更加强制清晰的划分,提高图像像素定位的准确性,从而加快算法的收敛速度。结果表明,本文算法在图像分割过程中能有效地降低异常值的影响,获得更加准确的分割结果。该算法在Jaccard相似系数、分割精度、Dice相似系数、模糊划分系数及模糊划分熵等性能方面均优于其他几种模糊C均值(Fuzzy C-Means,FCM)算法,且分割时间与迭代次数也优于FCOM算法。 展开更多
关键词 苗族图像分割 算法 模糊C有序均值 竞争学习 鲁棒性
在线阅读 下载PDF
基于最大熵模糊聚类简化的联合概率数据关联算法
15
作者 韩继辉 高龙 +2 位作者 黄子奇 黄道颖 张安琳 《火力与指挥控制》 CSCD 北大核心 2024年第12期62-67,76,共7页
针对杂波环境下联合概率数据关联算法(joint probabilistic data association,JPDA)计算复杂度较高、实时性较差等问题,提出一种基于最大熵模糊聚类的JPDA算法。基于目标轨迹和量测之间的关联规则,采用最大熵模糊聚类算法实现量测与目... 针对杂波环境下联合概率数据关联算法(joint probabilistic data association,JPDA)计算复杂度较高、实时性较差等问题,提出一种基于最大熵模糊聚类的JPDA算法。基于目标轨迹和量测之间的关联规则,采用最大熵模糊聚类算法实现量测与目标的初步数据关联,分析了公共量测对目标跟踪的影响,并引入了公共量测影响系数来修正关联概率,最后使用卡尔曼滤波算法对目标的状态估计进行预测,从而更新各个目标的状态。仿真结果表明,所提算法有效解决了在密集杂波环境中JPDA算法组合爆炸问题,极大缩短计算时间,提高了算法的实时性。 展开更多
关键词 多目标跟踪 联合概率数据关联算法 最大熵模糊
在线阅读 下载PDF
基于粒子群优化算法的模糊C-均值聚类 被引量:27
16
作者 张利彪 周春光 +2 位作者 马铭 刘小华 孙彩堂 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2006年第2期217-222,共6页
利用粒子群优化(PSO)算法全局寻优、快速收敛的特点,结合模糊C-均值(FCM)算法提出一种新的模糊聚类算法.新算法用PSO算法代替了FCM算法的基于梯度下降的迭代过程,使算法具有很强的全局搜索能力,很大程度上避免了FCM算法易陷入局部极小... 利用粒子群优化(PSO)算法全局寻优、快速收敛的特点,结合模糊C-均值(FCM)算法提出一种新的模糊聚类算法.新算法用PSO算法代替了FCM算法的基于梯度下降的迭代过程,使算法具有很强的全局搜索能力,很大程度上避免了FCM算法易陷入局部极小的缺陷;同时也降低了FCM算法对初始值的敏感度.实验结果表明,与FCM相比本文算法聚类更为准确,效率更高. 展开更多
关键词 粒子群优化算法 模糊 模糊C-均值算法
在线阅读 下载PDF
基于视觉显著性改进的水果图像模糊聚类分割算法 被引量:53
17
作者 陈科尹 邹湘军 +3 位作者 熊俊涛 彭红星 郭艾侠 陈丽娟 《农业工程学报》 EI CAS CSCD 北大核心 2013年第6期157-165,J0003,共10页
准确分割水果图像是采摘机器人实现视觉定位的关键技术。该文针对传统模糊聚类对初始聚类中心敏感、计算量大和易出现图像过分割等问题,结合机器人的视觉特性,提出了一种基于多尺度视觉显著性改进的水果图像模糊聚类分割算法。首先,选... 准确分割水果图像是采摘机器人实现视觉定位的关键技术。该文针对传统模糊聚类对初始聚类中心敏感、计算量大和易出现图像过分割等问题,结合机器人的视觉特性,提出了一种基于多尺度视觉显著性改进的水果图像模糊聚类分割算法。首先,选择适当的颜色模型把彩色水果图像转换为灰度图像;然后对灰度图像做不同尺度的高斯滤波处理,基于视觉显著性的特点,融合了多个不同尺度的高斯滤波图像,形成图像聚类空间;最后,用直方图和模拟退火粒子群算法对图像的传统模糊聚类分割算法进行了改进,用改进的算法分别对采集到的100张成熟荔枝和柑橘图像,各随机选取50张,进行图像分割试验。试验结果表明:该方法对成熟荔枝和柑橘的图像平均果实分割率分别为95.56%和93.68%,平均运行时间分别为0.724和0.790s,解决了水果图像过分割等问题,满足实际作业中采摘机器人对果实图像分割率和实时性的要求,为图像分割及其实时获取提供了一种新的基础算法,为视觉精确定位提供了有效的试验数据。 展开更多
关键词 图像处理 模糊 模拟退火 多尺度视觉显著性 粒子群算法 采摘机器人
在线阅读 下载PDF
基于EEMD和模糊C均值聚类算法诊断发动机曲轴轴承故障 被引量:36
18
作者 张玲玲 廖红云 +2 位作者 曹亚娟 骆诗定 赵懿冠 《内燃机学报》 EI CAS CSCD 北大核心 2011年第4期332-336,共5页
针对发动机振动信号的非平稳性以及特征参数的模糊性特点,提出了一种基于集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)和模糊C均值聚类(Fuzzy Center Mean,FCM)的故障诊断方法,通过对已知故障样本信号进行EEMD分解,... 针对发动机振动信号的非平稳性以及特征参数的模糊性特点,提出了一种基于集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)和模糊C均值聚类(Fuzzy Center Mean,FCM)的故障诊断方法,通过对已知故障样本信号进行EEMD分解,形成初始特征向量矩阵;对该矩阵进行奇异值分解,将矩阵的奇异值组成故障特征向量,标准化后作为FCM的输入,得到分类矩阵和聚类中心;最后通过计算待测故障样本与已知故障样本聚类中心的贴近度实现故障模式识别.故障诊断实例表明,该方法能有效地诊断柴油机曲轴轴承故障. 展开更多
关键词 模糊C均值算法 奇异值分解 经验模式分解 故障诊断 曲轴轴承
在线阅读 下载PDF
基于模糊聚类算法的多配送中心选址优化方法 被引量:12
19
作者 毛海军 王勇 +2 位作者 杭文 于航 何杰 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第5期1006-1011,共6页
为了优化二级设施物流网络中多配送中心的选址操作,提取了影响配送中心选址的主要因素,建立了一种综合评价指标体系.首先,将语言变量值用三角模糊数表示,对备选配送中心进行综合评价;然后,采用区间数优度函数法将二级准则指标集成到一... 为了优化二级设施物流网络中多配送中心的选址操作,提取了影响配送中心选址的主要因素,建立了一种综合评价指标体系.首先,将语言变量值用三角模糊数表示,对备选配送中心进行综合评价;然后,采用区间数优度函数法将二级准则指标集成到一级准则指标上,以集成后的方案评价指标值作为模糊聚类算法的输入进行聚类操作,并设计了聚类有效性指标以用于判断聚类结果合理性;最后,应用TOPSIS方法对各类内的备选址进行排序,以确定选址位置及数量.实例验证表明,当隶属度数值取0.740 2时,得到最小的聚类有效性指标为2.43.依据该操作可将备选配送中心分成4类进行逐类选址,选址结果合理且较其他方法更具有优越性.因此,该方法能够更有效地解决多配送中心选址问题. 展开更多
关键词 物流网络 多配送中心 三角模糊 模糊算法
在线阅读 下载PDF
模糊聚类算法参数优选方法及其在局部放电模式识别中的应用 被引量:11
20
作者 王辉 郑文栋 +4 位作者 吴晓春 姚林朋 黄成军 钱勇 江秀臣 《高电压技术》 EI CAS CSCD 北大核心 2010年第12期3002-3006,共5页
为了研究GIS中不同缺陷所激发的局部放电类型,设置了悬浮电极、针尖电晕、自由微粒以及气隙等4种常见缺陷模型。对采集的局放数据,建立了最大放电量、平均放电量和放电次数等二维相位分布函数,在此基础上提取24组指纹特征参数。在采用模... 为了研究GIS中不同缺陷所激发的局部放电类型,设置了悬浮电极、针尖电晕、自由微粒以及气隙等4种常见缺陷模型。对采集的局放数据,建立了最大放电量、平均放电量和放电次数等二维相位分布函数,在此基础上提取24组指纹特征参数。在采用模糊C均值(FCM)和Gustafson-Kessel(GK)等聚类算法对局放数据进行聚类分析时,针对聚类有效性,即样本集的类数c和模糊加权指数m的优选问题,介绍了一种新型聚类有效性评估指标U(c),发现U(c)值越大,得到的聚类数越接近于真实值。最后与其它有效性指标对比,验证了U(c)指标的准确性和有效性。 展开更多
关键词 局部放电(PD) 气体绝缘组合开关(GIS) 指纹特征 FCM算法 GK算法 模糊 有效性
在线阅读 下载PDF
上一页 1 2 48 下一页 到第
使用帮助 返回顶部