期刊文献+
共找到2,008篇文章
< 1 2 101 >
每页显示 20 50 100
基于主成分分析算法和K均值聚类算法的药品库存分类管理 被引量:1
1
作者 唐蕾 邱磊 +1 位作者 俞佳慧 冀召帅 《医药导报》 北大核心 2025年第4期682-686,共5页
目的针对目前药品分类主观性较强、分类标准模糊、影响因素繁杂的问题,探讨一种科学的药品分类方法,以降低库存成本,提高库存的有效性。方法在北京某三级医院2021—2022年历史数据中随机抽取700种药品为研究对象,通过主成分分析(PCA)算... 目的针对目前药品分类主观性较强、分类标准模糊、影响因素繁杂的问题,探讨一种科学的药品分类方法,以降低库存成本,提高库存的有效性。方法在北京某三级医院2021—2022年历史数据中随机抽取700种药品为研究对象,通过主成分分析(PCA)算法和K均值聚类(K-means)算法对研究对象进行分类。结果确定轮廓系数为0.3470的分类数4为最佳分类数,将700种药品分为4类,其中有363种归为第一类,186种归为第二类,94种归为第三类,57种归为第四类。将该文研究的药品分类方法模拟运用到某三级医院2023年第二季度的药品库存管理中,模拟结果表明该分类方法能够降低库存成本,提高库存有效性。结论基于PCA算法和K-means聚类算法的药品分类方法能够为药品库存分类管理提供可靠依据。 展开更多
关键词 药品分 主成分分析算法 k均值算法 药品库存管理
在线阅读 下载PDF
生成式人工智能领先企业专利布局实证分析——基于复杂网络分析与K均值聚类算法
2
作者 高山行 王慧 杨张博 《科技进步与对策》 北大核心 2025年第4期55-66,共12页
生成式人工智能(AIGC)技术对经济社会发展带来巨大挑战,现有研究多从技术规制、发展历程等方面展开,较少对AIGC领先企业专利布局进行深入分析。选取美国AIGC领域领先的14家初创公司和4家科技巨头,基于复杂网络分析方法和机器学习的K均... 生成式人工智能(AIGC)技术对经济社会发展带来巨大挑战,现有研究多从技术规制、发展历程等方面展开,较少对AIGC领先企业专利布局进行深入分析。选取美国AIGC领域领先的14家初创公司和4家科技巨头,基于复杂网络分析方法和机器学习的K均值聚类算法,利用专利IPC信息构建专利知识网络。研究发现,美国AIGC领先企业的专利布局聚焦于电数字数据处理、图形数据读取及呈现等技术领域;从专利布局知识宽度、知识深度、知识紧密程度、知识分离程度和知识一致性程度进行聚类,企业可分为三类,即专业玩家、大厂/领先者和创新者。同时,识别不同企业的核心知识领域和桥接知识领域,最后从算法、算力和数据方面为我国发展AIGC产业提出政策建议。 展开更多
关键词 生成式人工智能 AIGC 复杂网络 专利布局 k均值
在线阅读 下载PDF
满足本地差分隐私的混合噪音感知的模糊C均值聚类算法 被引量:1
3
作者 张朋飞 程俊 +4 位作者 张治坤 方贤进 孙笠 王杰 姜茸 《电子与信息学报》 北大核心 2025年第3期739-757,共19页
在大数据和物联网应用中,本地差分隐私(LDP)技术用于保护聚类分析中的用户隐私,但现有方法要么在LDP下交互式地进行聚类,需要消耗大量隐私预算,要么没有同时考虑到聚类数据中蕴含的表示数据质量的高斯噪音以及为满足LDP保护的拉普拉斯噪... 在大数据和物联网应用中,本地差分隐私(LDP)技术用于保护聚类分析中的用户隐私,但现有方法要么在LDP下交互式地进行聚类,需要消耗大量隐私预算,要么没有同时考虑到聚类数据中蕴含的表示数据质量的高斯噪音以及为满足LDP保护的拉普拉斯噪音,致使聚类精度低下。同时,对于衡量用户提交数据和簇心之间的距离选择较为武断,没有充分利用到用户提交的噪音数据中蕴含的噪音模式。为此,该文创新性地提出一种满足LDP的混合噪音感知的模糊C均值聚类算法(mnFCM),该算法的主要思想是同时建模用户上传数据中蕴含的表示用户质量的高斯噪音以及为保护用户数据注入的拉普拉斯噪音,进而设计出混合噪音感知的距离替代传统的欧式距离,来衡量样本数据与簇心间的相似性。特别地,在mnFCM中,该文首先设计了混合噪音感知的距离计算方法,在此基础上给出算法新的目标函数,并基于拉格朗日乘子法设计了求解方法,最后理论上分析了求解算法的收敛性。该文进一步理论分析了mnFCM的隐私、效用和复杂度,分析结果表明所提算法严格满足LDP、相对于对比算法更接近非隐私下的簇心以及和非隐私算法具有接近的复杂度。在两个真实数据集上的实验结果表明,mnFCM在满足LDP下,聚类精度提高了10%~15%。 展开更多
关键词 分析 隐私保护 本地差分隐私 模糊C均值 拉普拉斯机制
在线阅读 下载PDF
基于自组织映射优化k均值聚类合成少数类算法及应用
4
作者 罗博炜 谭家驹 冯纪强 《广西大学学报(自然科学版)》 北大核心 2025年第3期679-689,共11页
针对金融数据高度不平衡使信贷违约预警模型训练和评估的复杂度大大增加的特点,为了改进重采样方法,运用自组织映射(SOM)神经网络来优化k均值聚类合成少数类(k-Means-SMOTE)算法,通过自组织映射神经网络识别和分析不平衡数据集的结构特... 针对金融数据高度不平衡使信贷违约预警模型训练和评估的复杂度大大增加的特点,为了改进重采样方法,运用自组织映射(SOM)神经网络来优化k均值聚类合成少数类(k-Means-SMOTE)算法,通过自组织映射神经网络识别和分析不平衡数据集的结构特征,将高维数据有效地映射至低维空间。在此基础上,结合k-Means算法进行数据聚类,以识别少数类样本的潜在群集,从而更准确地确定过采样的焦点区域。最后运用SMOTE技术对这些焦点区域进行过采样,增加少数类样本数量的同时保持数据的原始特征分布,从而减少过拟合的风险。在Bank marketing、Credit_Fraud等多个经典的真实金融数据集上的实验证明,该方法能够通过增加聚类稳定性来提升传统过采样算法的质量,在提升模型性能的同时降低算法复杂度。 展开更多
关键词 自组织映射神经网络 算法 k均值合成少数过采样方法 信贷违约预警
在线阅读 下载PDF
基于非局部信息和子空间的模糊C有序均值聚类的图像分割算法
5
作者 陈阳 黄成泉 +3 位作者 覃小素 彭家磊 雷欢 周丽华 《计算机辅助设计与图形学学报》 北大核心 2025年第3期506-518,共13页
针对模糊C有序均值聚类算法没有考虑图像空间信息,导致难以有效地分割含噪图像的问题,提出一种基于非局部信息和子空间的模糊C有序均值聚类(non-local information and subspace for fuzzy C-ordered means,SFCOM-NLS)算法.首先,利用图... 针对模糊C有序均值聚类算法没有考虑图像空间信息,导致难以有效地分割含噪图像的问题,提出一种基于非局部信息和子空间的模糊C有序均值聚类(non-local information and subspace for fuzzy C-ordered means,SFCOM-NLS)算法.首先,利用图像中给定的相似邻域结构的像素提取当前像素的非局部空间信息;其次,计算每个像素的典型性,并对其进行排序,在每次迭代中更新像素的典型性,提高像素聚类的准确性,解决在聚类过程中存在相似类导致的误分类问题;最后,引入子空间聚类概念,为图像不同维度分配适当的权重,提高彩色图像的分割性能.在含噪合成图像和公开数据集BSDS500,MSRA100和AID上实验结果表明,所提算法的模糊划分系数、模糊划分熵、分割精度和标准化互信息平均值分别达到了95.00%,6.66%,98.77%和95.54%,均优于对比的同类算法. 展开更多
关键词 非局部空间信息 子空间 模糊C有序均值 噪声图像分割 鲁棒性
在线阅读 下载PDF
应用距离裁剪策略的改进k均值聚类量化算法
6
作者 查坤 安永丽 +1 位作者 刘英超 宋文丰 《电讯技术》 北大核心 2025年第7期1078-1086,共9页
为进一步提高物理层密钥生成过程中量化阶段的密钥一致性和可靠性,提出了一种基于距离的样本筛选策略。该策略通过测量样本与聚类中心的欧氏距离差,评估分类不确定性,剔除高不确定度样本以减少噪声干扰。仿真结果表明,在k均值量化算法... 为进一步提高物理层密钥生成过程中量化阶段的密钥一致性和可靠性,提出了一种基于距离的样本筛选策略。该策略通过测量样本与聚类中心的欧氏距离差,评估分类不确定性,剔除高不确定度样本以减少噪声干扰。仿真结果表明,在k均值量化算法和补偿k均值量化算法中引入该策略后,当单个样本量化为5比特时,分类不一致率分别降低8.1%和11.7%;量化为单比特时,分别降低63.4%和89.3%。 展开更多
关键词 物理层安全 密钥生成 信道量化:k均值 距离裁剪策略
在线阅读 下载PDF
基于K均值聚类的光伏集群发电功率超短期预测研究
7
作者 文贤馗 何明君 +3 位作者 张俊玮 周科 蔡永翔 张凡 《电力系统保护与控制》 北大核心 2025年第12期165-172,共8页
准确的分布式光伏超短期功率预测对于分布式光伏接入电网具有至关重要的意义,但是当前分布式光伏功率预测中存在气象数据精度不够、功率数据不完整等问题。为此,提出了一种基于集群划分的区域光伏预测方法。首先选择正反向电量比、功率... 准确的分布式光伏超短期功率预测对于分布式光伏接入电网具有至关重要的意义,但是当前分布式光伏功率预测中存在气象数据精度不够、功率数据不完整等问题。为此,提出了一种基于集群划分的区域光伏预测方法。首先选择正反向电量比、功率中位数与平均数比值两个维度作为距离计算依据,采用K均值聚类算法对区域中所有光伏电站进行集群划分。在集群划分的基础上,对每个集群分别进行光伏功率预测,然后综合所有集群的预测结果实现对分布式光伏区域预测。最后采用某区域分布式光伏发电场站数据进行了验证。结果表明:所提算法精度较高,所提方法能够满足现场的要求。 展开更多
关键词 分布式光伏 集群划分 功率预测 k均值 长短期记忆网络
在线阅读 下载PDF
基于模糊逻辑COOT优化K调和均值的数据聚类算法
8
作者 戴峦岳 梁宵月 +1 位作者 王帅 王震坡 《广西科学》 北大核心 2024年第5期900-911,共12页
针对K调和均值(K-Harmonic Means, KHM)聚类算法易陷入局部最优的不足,本文结合KHM聚类算法的快速局部开发和白骨顶鸡优化算法(Coot optimization algorithm, COOT)的全局勘探能力,提出一种模糊逻辑COOT优化KHM的数据聚类算法(Fuzzy COO... 针对K调和均值(K-Harmonic Means, KHM)聚类算法易陷入局部最优的不足,本文结合KHM聚类算法的快速局部开发和白骨顶鸡优化算法(Coot optimization algorithm, COOT)的全局勘探能力,提出一种模糊逻辑COOT优化KHM的数据聚类算法(Fuzzy COOT K-Harmonic Means, FCOOTKHM)。将KHM聚类算法生成的初始聚类解输入白骨顶鸡初始种群结构再进行迭代寻优。同时,为了进一步提升COOT的搜索精度,设计模糊逻辑对COOT的收敛因子和领导者种群占比进行自适应调整,均衡算法的搜索与开发能力。使用聚类调和平均值评估种群个体的适应度,结合智能算法启发式搜索对聚类结果迭代寻优。利用加州大学欧文分校(University of California Irvine, UCI)数据库中的7个数据集对FCOOTKHM的聚类性能进行验证分析。结果表明,FCOOTKHM在准确率、精确度、召回率、F度量、Kappa系数和收敛效率等指标上均表现更好,该算法能够实现更精确的数据聚类。 展开更多
关键词 模糊逻辑 模糊系统 白骨顶鸡优化算法 k调和均值 收敛性
在线阅读 下载PDF
改进模糊聚类语义分割声环境功能区划图
9
作者 曾宇 姚琨 秦勤 《噪声与振动控制》 北大核心 2025年第2期210-215,共6页
声环境功能区划多采用地理信息系统进行研究,但公开发布的声环境功能区划方案中的文字和图片无法直接用于地理信息系统分析。首先提出改进模糊C均值聚类超像素方法,对声环境功能区划图进行语义分割以获取声功能区信息。接着采用简单线... 声环境功能区划多采用地理信息系统进行研究,但公开发布的声环境功能区划方案中的文字和图片无法直接用于地理信息系统分析。首先提出改进模糊C均值聚类超像素方法,对声环境功能区划图进行语义分割以获取声功能区信息。接着采用简单线性迭代聚类构建超像素,提取声环境功能区划图特征矩阵,基于K-means++改进模糊C均值聚类算法,语义分割超像素粒化的声环境功能区划图,并以声功能区面积占比计算结果偏差为评价指标,分析超像素尺度对分割结果的影响。然后基于不同图像特征矩阵构建方法和聚类中心初始化方法,使用模糊C均值聚类、高斯混合模型聚类、K-medoids聚类语义分割声环境功能区划图,最后比较不同组合方案的声功能区面积占比计算结果偏差,验证方法的有效性。 展开更多
关键词 声学 声环境功能区划图 彩色图像分割 模糊C均值 简单线性迭代 k-means++算法
在线阅读 下载PDF
基于核的非凸数据模糊K-均值聚类研究 被引量:7
10
作者 叶吉祥 谭冠政 路秋静 《计算机工程与设计》 CSCD 北大核心 2005年第7期1784-1785,1792,共3页
将模糊K-均值聚类算法与核函数相结合,采用基于核的模糊K-均值聚类算法来进行聚类。核函数隐含地定义了一个非线性变换,将数据非线性映射到高维特征空间来增加数据的可分性。该算法能够解决模糊K-均值聚类算法对于非凸形状数据不能正确... 将模糊K-均值聚类算法与核函数相结合,采用基于核的模糊K-均值聚类算法来进行聚类。核函数隐含地定义了一个非线性变换,将数据非线性映射到高维特征空间来增加数据的可分性。该算法能够解决模糊K-均值聚类算法对于非凸形状数据不能正确聚类的问题。 展开更多
关键词 模糊k-均值
在线阅读 下载PDF
茶叶傅里叶红外光谱的可能模糊K调和均值聚类分析 被引量:3
11
作者 武斌 王大智 +1 位作者 武小红 贾红雯 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2018年第3期745-749,共5页
茶叶的品种不同,其有机化学成分含量往往不同,其功效也是不尽相同的,因此,研究出一种简单、高效、识别率高的茶叶品种鉴别技术方法是十分有必要的。中红外光谱技术是一种快速检测技术,在用中红外光谱仪采集得到的茶叶中红外光谱中含有... 茶叶的品种不同,其有机化学成分含量往往不同,其功效也是不尽相同的,因此,研究出一种简单、高效、识别率高的茶叶品种鉴别技术方法是十分有必要的。中红外光谱技术是一种快速检测技术,在用中红外光谱仪采集得到的茶叶中红外光谱中含有噪声信号。为了对含噪声茶叶中红外光谱的准确分类以实现茶叶品种分类,将可能模糊C-均值聚类(PFCM)思想应用到K调和均值(KHM)聚类,设计出一种可能模糊K调和均值(PFKHM)聚类算法,计算出PFKHM的模糊隶属度、典型值和聚类中心。可能模糊K调和均值聚类能有效解决K调和均值聚类的噪声敏感性问题。用傅里叶红外光谱分析仪(FTIR-7600型)分别对三种茶叶(优质乐山竹叶青、劣质乐山竹叶青和峨眉山毛峰)进行扫描以获取它们的傅里叶中红外光谱。光谱波数区间是4 001.569~401.121 1cm^(-1)。先采用主成分分析法(PCA)将光谱数据压缩到20维,再采用线性判别分析(LDA)将光谱数据压缩到两维并提取鉴别特征信息。最后分别用K调和均值聚类和可能模糊K调和均值聚类实现茶叶品种分类。实验结果:当权重指数m=2,q=2和p=2时,KHM具有91.67%的聚类准确率,PFKHM聚类准确率达到94.44%;KHM迭代12次达到收敛,而PFKHM迭代11次就可以达到收敛。采用傅里叶红外光谱技术检测茶叶,用主成分分析和线性判别分析压缩光谱数据,再用可能模糊K调和均值聚类进行品种分类可快速、准确地实现茶叶品种的鉴别。 展开更多
关键词 茶叶 红外光谱 主成分分析 k调和均值 可能模糊k调和均值
在线阅读 下载PDF
融合多尺度统计信息模糊C均值聚类与Markov随机场的小波域声纳图像分割 被引量:5
12
作者 夏平 任强 +1 位作者 吴涛 雷帮军 《兵工学报》 EI CAS CSCD 北大核心 2017年第5期940-948,共9页
声纳图像成像质量差、特征信息弱,目标分割存在一定困难,为此提出一种融合多尺度统计信息的模糊C均值(FCM)聚类与Markov随机场(MRF)的小波域声纳图像分割算法。小波域中低频信息统计特性描述了低频不同区域像素聚类情况,高频信息反映了... 声纳图像成像质量差、特征信息弱,目标分割存在一定困难,为此提出一种融合多尺度统计信息的模糊C均值(FCM)聚类与Markov随机场(MRF)的小波域声纳图像分割算法。小波域中低频信息统计特性描述了低频不同区域像素聚类情况,高频信息反映了该方向纹理特征,依据低频子带的统计峰值选取FCM初始聚类中心,应用小波域FCM聚类算法对声纳图像进行预分割,抑制噪声的影响,提高了预分割的准确性;构建初分割后图像的多尺度MRF模型,尺度间节点标记的相关性采用1阶Markov性表征,尺度内构建2阶邻域系统描述系数间的标记联系,标记场采用双点多级逻辑模型建模,同一标记的系数特征场采用高斯模型建模,弥补了MRF算法中层次信息和轮廓信息描述的不足;应用迭代条件模型算法求其最小能量下的标记场,实现声纳图像分割。从视觉主观效果和客观评价指标两方面的实验结果验证表明,该算法分割声纳图像均优于FCM聚类算法和MRF算法,分割的声纳图像边缘与细节的清晰度、精细度均有一定程度改善。 展开更多
关键词 信息处理技术 声纳图像分割 模糊C均值 MARkOV随机场 小波域 迭代条件模型算法
在线阅读 下载PDF
Bezdek型模糊属性C均值聚类算法 被引量:4
13
作者 刘敬伟 徐美芝 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2007年第9期1121-1126,共6页
推广了属性均值聚类算法,提出了基于模糊度m的Bezdek型模糊属性C均值聚类算法(FAMC),给出了FAMC算法的迭代算法,并讨论了模糊度m对算法收敛性的影响.在标准Iris数据集与肿瘤基因芯片表达数据的模式识别实验结果,验证了该算法优于模糊C... 推广了属性均值聚类算法,提出了基于模糊度m的Bezdek型模糊属性C均值聚类算法(FAMC),给出了FAMC算法的迭代算法,并讨论了模糊度m对算法收敛性的影响.在标准Iris数据集与肿瘤基因芯片表达数据的模式识别实验结果,验证了该算法优于模糊C均值算法和属性均值聚类算法. 展开更多
关键词 模糊C均值算法 属性均值 稳态函数 基因表达数据
在线阅读 下载PDF
广义模糊K调和均值聚类的近红外光谱生菜储藏时间鉴别 被引量:1
14
作者 武小红 潘明辉 +2 位作者 武斌 嵇港 孙俊 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2016年第6期1721-1725,共5页
生菜的储藏时间是影响生菜新鲜程度的重要因素。为了快速、无损和有效地鉴别生菜的储藏时间,以欧式距离的p次方代替模糊K调和均值聚类(FKHM)中欧式距离的平方提出了一种广义模糊K调和均值聚类(GFKHM)算法并将该算法应用于鉴别生菜的储... 生菜的储藏时间是影响生菜新鲜程度的重要因素。为了快速、无损和有效地鉴别生菜的储藏时间,以欧式距离的p次方代替模糊K调和均值聚类(FKHM)中欧式距离的平方提出了一种广义模糊K调和均值聚类(GFKHM)算法并将该算法应用于鉴别生菜的储藏时间。以60个新鲜生菜样本为研究对象,采用AntarisⅡ近红外光谱分析仪每隔12h检测生菜的近红外漫反射光谱,共检测三次,光谱扫描的波数范围为10 000~4 000cm^(-1)。首先用主成分分析(PCA)对1 557维的生菜近红外光谱进行降维处理以减少冗余信息,取前20个主成分,经过PCA处理后得到20维的数据。然后用线性判别分析(LDA)提取光谱数据的鉴别信息以提高聚类的准确率,取鉴别向量数为2,则LDA将20维的数据转换为2维数据。最后以模糊C-均值聚类(FCM)的类中心作为FKHM和GFKHM的初始聚类中心,分别运行FKHM和GFKHM计算模糊隶属度以实现生菜储藏时间的鉴别。结果表明,GFKHM的鉴别准确率能达到92.5%,FKHM的鉴别准确率为90.0%,GFKHM具有比FKHM更高的鉴别准确率。GFKHM的聚类中心比FKHM更逼近真实类中心。GFKHM的收敛速度明显快于FKHM。采用近红外光谱技术同时结合GFKHM,PCA和LDA为快速和无损地鉴别生菜储藏时间提供了一种新的方法。 展开更多
关键词 近红外光谱 生菜 储藏时间 线性判别分析 模糊k调和均值
在线阅读 下载PDF
基于改进模糊C均值聚类与SMO算法的地铁轨道健康状态评价
15
作者 许以凯 杨艺 +2 位作者 张明凯 赵才友 万壮 《铁道标准设计》 北大核心 2024年第11期53-59,共7页
轨道健康状态评价技术对于保障列车的运行安全与乘客的舒适性有重要意义,为寻求一种新的轨道设备综合评价方法,实现对轨道健康状态的科学评价,提出一种基于改进模糊C均值聚类和序列最小优化算法(SMO)构建轨道健康状态评估分析模型。该... 轨道健康状态评价技术对于保障列车的运行安全与乘客的舒适性有重要意义,为寻求一种新的轨道设备综合评价方法,实现对轨道健康状态的科学评价,提出一种基于改进模糊C均值聚类和序列最小优化算法(SMO)构建轨道健康状态评估分析模型。该模型首先提出包含轨道几何状态和结构状态的综合评价指标体系;其次采用变异系数法计算评价指标的权重系数并代入模糊C均值聚类法,得到各轨道样本的分类结果;在此基础上,再利用序列最小优化算法通过划分数据对轨道健康状态进行评价;最后通过实例分析对该评价模型进行验证并开展研究。研究结果表明,经模型评价的855个轨道单元评价结果中优良比例为94%,预测效果良好,平均误差为5%,进而验证了该模型的指标体系和评价方法的科学性和合理性,并给出了进一步研究优化的方向。本文对各轨道指标统筹综合评价,为地铁轨道工务管理线路质量评价提供一种新思路,使轨道设备管理变得有序可控,减少人力、物力资源的浪费。 展开更多
关键词 地铁 轨道 健康状态评价 变异系数法 模糊C均值 SMO算法
在线阅读 下载PDF
基于KL变换的模糊C-均值聚类彩色图像分割 被引量:5
16
作者 张晓芸 朱庆生 《计算机科学》 CSCD 北大核心 2006年第4期218-220,239,共4页
根据图像色彩特征空间的正交特性,以及构成特征空间的特征向量和特征值之间的统计特性,提出了一种新的彩色图像指定区域分割算法。首先在指定区域选取采样像素,通过 KL 变换计算采样像素的协方差矩阵、特征值、特征向量;由特征向量构成... 根据图像色彩特征空间的正交特性,以及构成特征空间的特征向量和特征值之间的统计特性,提出了一种新的彩色图像指定区域分割算法。首先在指定区域选取采样像素,通过 KL 变换计算采样像素的协方差矩阵、特征值、特征向量;由特征向量构成指定区域的色彩特征空间,然后对原色彩空间中的向量进行空间变换和权重变换;最后用模糊 C-均值聚类方法聚类变换后的向量,得到分割结果。文中给出了静物图像的聚类分割结果,体现了算法对于指定区域细节分割的准确性。 展开更多
关键词 彩色图像分割 kL变换 模糊C-均值 协方差矩阵
在线阅读 下载PDF
基于改进K均值聚类的光伏板缺陷检测方法 被引量:4
17
作者 赵强 刘胜杰 +2 位作者 韩东成 刘常瑜 杨世植 《红外技术》 CSCD 北大核心 2024年第4期475-482,共8页
为了能够对光伏组件热斑部分准确地识别和提取,提出了一种基于HSV空间模型的改进K均值聚类图像处理方法。首先,将红外图像进行HSV空间转换和双边滤波处理,去除噪声并提高图像对比度;其次,使用高斯核函数估计实现图像灰度概率密度函数提... 为了能够对光伏组件热斑部分准确地识别和提取,提出了一种基于HSV空间模型的改进K均值聚类图像处理方法。首先,将红外图像进行HSV空间转换和双边滤波处理,去除噪声并提高图像对比度;其次,使用高斯核函数估计实现图像灰度概率密度函数提取,并以此获取初始聚类中心;最后,利用先验知识对图像进行K均值聚类,提取和量化热斑缺陷。研究结果表明,该方法能够快速地检测定位热斑位置并统计出光伏板损坏程度,具有较高的精度以及较好的灵敏性和稳定性。 展开更多
关键词 红外图像 缺陷检测 热斑 光伏板 HSV空间模型 改进k均值
在线阅读 下载PDF
改进的粗糙模糊和模糊粗糙K-均值聚类算法 被引量:2
18
作者 田大增 吴静 《计算机工程与应用》 CSCD 2014年第17期142-145,190,共5页
在分析归纳原有聚类方法不足的基础上,结合粗糙理论和模糊理论,给出了改进的粗糙模糊K-均值聚类算法;设计了新的模糊粗糙K-均值聚类算法,并验证了该聚类算法的有效性;进而将这两种聚类算法应用到支持向量机中,对训练样本做预处理,以减... 在分析归纳原有聚类方法不足的基础上,结合粗糙理论和模糊理论,给出了改进的粗糙模糊K-均值聚类算法;设计了新的模糊粗糙K-均值聚类算法,并验证了该聚类算法的有效性;进而将这两种聚类算法应用到支持向量机中,对训练样本做预处理,以减少样本数目,提高了其训练速度和分类精度。 展开更多
关键词 粗糙模糊k-均值 模糊粗糙k-均值 支持向量机
在线阅读 下载PDF
模糊K-均值聚类算法及其在磁共振颅脑图像分割中的应用研究 被引量:2
19
作者 顾顺德 聂生东 +1 位作者 陈瑛 章鲁 《中国医学影像技术》 CSCD 北大核心 1999年第12期988-991,共4页
目的 介绍一种动态模糊聚类算法并利用该算法对磁共振图像进行分割研究。方法 首先对磁共振颅脑图像进行预处理去掉颅骨和肌肉等非脑组织,只保留大脑组织,然后利用模糊K- 均值聚类算法计算脑白质、脑灰质和脑脊液的模糊类属函数... 目的 介绍一种动态模糊聚类算法并利用该算法对磁共振图像进行分割研究。方法 首先对磁共振颅脑图像进行预处理去掉颅骨和肌肉等非脑组织,只保留大脑组织,然后利用模糊K- 均值聚类算法计算脑白质、脑灰质和脑脊液的模糊类属函数。结果 模糊K- 均值聚类算法能很好地分割出磁共振颅脑图像中的灰质、白质和脑脊液。结论 利用模糊K- 均值聚类算法分割磁共振颅脑图像能获得较好的分割效果。 展开更多
关键词 模糊k-均值 分割 颅脑图像 NMR 成像
在线阅读 下载PDF
基于空间信息的鲁棒模糊C均值聚类的苗族服饰图像分割算法 被引量:2
20
作者 覃小素 黄成泉 +3 位作者 彭家磊 陈阳 雷欢 周丽华 《毛纺科技》 CAS 北大核心 2024年第1期91-98,共8页
针对苗族服饰图像中破损污渍、折叠痕迹、色彩差异大和噪声破坏等现象所导致的传统模糊C均值聚类(Fuzzy C-means,FCM)算法分割质量不佳问题,提出了基于空间信息鲁棒FCM算法,用于苗族服饰图像分割。通过均值滤波和中值滤波处理空间邻域信... 针对苗族服饰图像中破损污渍、折叠痕迹、色彩差异大和噪声破坏等现象所导致的传统模糊C均值聚类(Fuzzy C-means,FCM)算法分割质量不佳问题,提出了基于空间信息鲁棒FCM算法,用于苗族服饰图像分割。通过均值滤波和中值滤波处理空间邻域信息,对应获得2种方法,并用一个加权参数调节模糊隶属度的稀疏性,旨在加强细节的提取和提高算法对噪声的鲁棒性。实验表明,对于被高斯噪声破坏的图像,基于均值滤波处理的改进算法,其划分系数提高约3.6%,划分熵降低约5.6%;对于被椒盐噪声破坏的图像,基于中值滤波处理的空间约束项的改进算法,划分系数提高约2.7%,划分熵降低约4.3%。该算法提高了对这类苗族服饰图像分割的质量,对于传统文化的传承具有非凡的意义。 展开更多
关键词 苗族服饰图像 模糊C均值 均值滤波 中值滤波 模糊隶属度的稀疏性
在线阅读 下载PDF
上一页 1 2 101 下一页 到第
使用帮助 返回顶部