期刊文献+
共找到557篇文章
< 1 2 28 >
每页显示 20 50 100
模糊C-均值(FCM)聚类法与矢量量化法相结合用于说话人识别 被引量:7
1
作者 吴晓娟 韩先花 聂开宝 《电子与信息学报》 EI CSCD 北大核心 2002年第6期845-849,共5页
该文提出了一种将模糊C-均值聚类法与矢量量化法相结合进行说话人识别的方法。该算法将从语音信号中提取的 12阶 LPC(线性预测编码)倒谱系数作为待分类样本的 12个指标,先用矢量量化法求出每个说话人表征特征参数的码书,作为模糊聚类算... 该文提出了一种将模糊C-均值聚类法与矢量量化法相结合进行说话人识别的方法。该算法将从语音信号中提取的 12阶 LPC(线性预测编码)倒谱系数作为待分类样本的 12个指标,先用矢量量化法求出每个说话人表征特征参数的码书,作为模糊聚类算法的聚类中心,最后将待识别的特征矢量以得到的码书为聚类中心,进行聚类识别。该算法所使用的特征参数较少,计算比较简单,但识别率较矢量量化法高。 展开更多
关键词 模糊c-均值(fcm)聚类法 模糊聚类 矢量量化 说话人识别 语音特征 语音识别
在线阅读 下载PDF
一种改进的模糊C-均值(FCM)聚类算法 被引量:13
2
作者 安良 胡勇 +1 位作者 胡良梅 孟玲玲 《合肥工业大学学报(自然科学版)》 CAS CSCD 2003年第3期354-358,共5页
模糊C-均值(FCM)聚类算法受初始化影响较大,在迭代时容易陷入局部极小,鉴于遗传算法(GA)的并行全局搜索能力,文章将遗传算法引入进来对FCM聚类算法加以改进,并对所提出的新算法与经典算法的迭代步数和运行时间进行比较。实验结果表明:... 模糊C-均值(FCM)聚类算法受初始化影响较大,在迭代时容易陷入局部极小,鉴于遗传算法(GA)的并行全局搜索能力,文章将遗传算法引入进来对FCM聚类算法加以改进,并对所提出的新算法与经典算法的迭代步数和运行时间进行比较。实验结果表明:该算法与FCM聚类算法相比收敛速度更快,迭代步数更少。 展开更多
关键词 改进模糊c-均值聚类算法 fcm聚类算法 遗传算法 迭代步数 运行时间
在线阅读 下载PDF
IFCM:改进的区间值数据的模糊C-均值聚类算法 被引量:2
3
作者 张忠平 陈丽萍 王爱杰 《计算机工程与设计》 CSCD 北大核心 2008年第24期6320-6322,共3页
对基于区间值数据的模糊聚类算法进行了研究,介绍了具有控制区间大小对聚类结果影响的加权因子的模糊C-均值聚类新算法。针对区间值数据模糊C-均值聚类新算法提出了一个适应距离的弹性系数,使算法得到改进,既能利用传统的FCM算法,又考... 对基于区间值数据的模糊聚类算法进行了研究,介绍了具有控制区间大小对聚类结果影响的加权因子的模糊C-均值聚类新算法。针对区间值数据模糊C-均值聚类新算法提出了一个适应距离的弹性系数,使算法得到改进,既能利用传统的FCM算法,又考虑了区间大小对聚类结果的影响,同时也能发现不规则的聚类子集,使聚类结果更加准确。 展开更多
关键词 区间值数据 模糊c-均值聚类 Ifcm算法 自适应系数 聚类原型
在线阅读 下载PDF
基于模糊C-均值算法粗糙集理论的云模型在岩爆等级评价中的应用 被引量:25
4
作者 郝杰 侍克斌 +2 位作者 王显丽 白现军 陈功民 《岩土力学》 EI CAS CSCD 北大核心 2016年第3期859-866,874,共9页
岩爆等级评价具有模糊性和不确定性,而粗糙集理论的云模型对处理模糊性和不确定性问题具有独特优势,由此提出了基于模糊C均值(简称FCM)算法粗糙集的云模型理论在岩爆等级评价中的新模型。该模型选用岩石单轴抗压强度σ_c、洞室围岩最大... 岩爆等级评价具有模糊性和不确定性,而粗糙集理论的云模型对处理模糊性和不确定性问题具有独特优势,由此提出了基于模糊C均值(简称FCM)算法粗糙集的云模型理论在岩爆等级评价中的新模型。该模型选用岩石单轴抗压强度σ_c、洞室围岩最大的切向应力σ_θ、岩石单轴抗拉强度σ_t和岩石弹性能量指数W_(et)作为岩爆等级评价因子,依据岩爆分级标准计算各评价因子隶属于不同岩爆等级的云数字特征。同时,以国内外40例岩爆工程为研究对象,运用基于FCM算法的粗糙度理论进行因子属性重要性评价,计算各评价因子权重。根据正向正态云发生器,得到待评样本的综合确定度,由最大综合确定度判定岩爆级别。研究表明:该模型的评价结果与实际情况基本一致,具有一定的可行性,为岩爆预测提供了一种新的研究方法与思路。 展开更多
关键词 岩爆等级评价 云模型 粗糙集 模糊c-均值(fcm)算法 综合确定度
在线阅读 下载PDF
基于粒子群优化算法的模糊C-均值聚类 被引量:27
5
作者 张利彪 周春光 +2 位作者 马铭 刘小华 孙彩堂 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2006年第2期217-222,共6页
利用粒子群优化(PSO)算法全局寻优、快速收敛的特点,结合模糊C-均值(FCM)算法提出一种新的模糊聚类算法.新算法用PSO算法代替了FCM算法的基于梯度下降的迭代过程,使算法具有很强的全局搜索能力,很大程度上避免了FCM算法易陷入局部极小... 利用粒子群优化(PSO)算法全局寻优、快速收敛的特点,结合模糊C-均值(FCM)算法提出一种新的模糊聚类算法.新算法用PSO算法代替了FCM算法的基于梯度下降的迭代过程,使算法具有很强的全局搜索能力,很大程度上避免了FCM算法易陷入局部极小的缺陷;同时也降低了FCM算法对初始值的敏感度.实验结果表明,与FCM相比本文算法聚类更为准确,效率更高. 展开更多
关键词 粒子群优化算法 模糊聚类 模糊c-均值算法
在线阅读 下载PDF
基于模糊C-均值聚类的锅炉监控参数基准值建模 被引量:21
6
作者 赵欢 王培红 +2 位作者 钱瑾 苏志刚 彭献永 《中国电机工程学报》 EI CSCD 北大核心 2011年第32期16-22,共7页
锅炉各监控参数基准值的确定是分析锅炉运行能耗偏差的基础。该文充分利用锅炉运行数据的关联特性,提出了一种基于模糊C-均值聚类算法实现多参量同步聚类以确定锅炉监控参数基准值的方法。该方法可以在实际运行数据中同步挖掘出某典型... 锅炉各监控参数基准值的确定是分析锅炉运行能耗偏差的基础。该文充分利用锅炉运行数据的关联特性,提出了一种基于模糊C-均值聚类算法实现多参量同步聚类以确定锅炉监控参数基准值的方法。该方法可以在实际运行数据中同步挖掘出某典型负荷邻域区间对应的排烟氧量、排烟温度和飞灰含碳量等监控参数基准值,从而达到改善锅炉运行性能的目标。在多参量同步聚类算法中,利用有效性函数优化模糊聚类数,提出运行模式支持度的相关概念及其样本支持判定的规则,并对类中心点处较小ε区域内样本进行无偏估计。实例分析结果表明:该方法能够在兼顾参数之间耦合关系的基础上,得到高效工况下对应的各基准值样本点,并建立相应的基准值模型。 展开更多
关键词 基准值 能耗偏差 模糊c-均值聚类 数据挖掘
在线阅读 下载PDF
点密度函数加权模糊C-均值算法的聚类分析 被引量:30
7
作者 刘小芳 曾黄麟 吕炳朝 《计算机工程与应用》 CSCD 北大核心 2004年第24期64-65,96,共3页
基于模糊C-均值算法具有对数据集进行等划分趋势的缺陷,文章利用数据点的密度大小作为权值,借助数据本身的分布特性,提出了一种新的加权模糊C-均值算法,该方法不仅在一定程度上克服了模糊C-均值算法的缺陷,而且具有良好的收敛性。
关键词 模糊c-均值算法 点密度函数 加权 模糊聚类分析
在线阅读 下载PDF
可能性模糊C-均值聚类新算法 被引量:34
8
作者 武小红 周建江 《电子学报》 EI CAS CSCD 北大核心 2008年第10期1996-2000,共5页
模糊C-均值聚类(FCM)对噪声数据敏感和可能性C-均值聚类(PCM)对初始类中心非常敏感易导致一致性聚类.可能性模糊C-均值聚类(PFCM)综合了FCM和PCM算法并且克服了这些缺点.但是PFCM必须先运行FCM来计算参数.提出一种新的PCM算法,新的PCM... 模糊C-均值聚类(FCM)对噪声数据敏感和可能性C-均值聚类(PCM)对初始类中心非常敏感易导致一致性聚类.可能性模糊C-均值聚类(PFCM)综合了FCM和PCM算法并且克服了这些缺点.但是PFCM必须先运行FCM来计算参数.提出一种新的PCM算法,新的PCM算法利用协方差矩阵来计算参数衡量了数据集的紧凑程度且无须先运行FCM,在新的PCM和FCM基础上提出了新PFCM算法,该算法无须事先运行FCM以计算参数,减少了算法运算时间.对数据集的测试实验结果表明了提出的新算法能同时产生模糊隶属度和典型值,减少聚类时间,同时具有更好的分类准确率. 展开更多
关键词 模糊聚类 模糊c-均值聚类 可能性c-均值聚类 可能性模糊c-均值聚类
在线阅读 下载PDF
模糊C-均值聚类算法的优化 被引量:17
9
作者 熊拥军 刘卫国 欧鹏杰 《计算机工程与应用》 CSCD 北大核心 2015年第11期124-128,共5页
针对传统模糊C-均值聚类算法(FCM算法)初始聚类中心选择的随机性和距离向量公式应用的局限性,提出一种基于密度和马氏距离优化的模糊C-均值聚类算法(Fuzzy C-Means Based on Mahalanobis and Density,FCMBMD算法)。该算法通过计算样本... 针对传统模糊C-均值聚类算法(FCM算法)初始聚类中心选择的随机性和距离向量公式应用的局限性,提出一种基于密度和马氏距离优化的模糊C-均值聚类算法(Fuzzy C-Means Based on Mahalanobis and Density,FCMBMD算法)。该算法通过计算样本点的密度来确定初始聚类中心,避免了初始聚类中心随机选取而产生的聚类结果的不稳定;采用马氏距离计算样本集的相似度,以满足不同度量单位数据的要求。实验结果表明,FCMBMD算法在聚类中心、收敛速度、迭代次数以及准确率等方面具有良好的效果。 展开更多
关键词 聚类 模糊c-均值 密度函数 马氏距离 基于密度和马氏距离优化的模糊c-均值聚类(fcmBMD)算法
在线阅读 下载PDF
基于自适应模糊C-均值的增量式聚类算法 被引量:11
10
作者 张忠平 陈丽萍 +1 位作者 王爱杰 林志杰 《计算机工程》 CAS CSCD 北大核心 2009年第6期60-62,65,共4页
针对模糊C-均值(FCM)算法不能很好地处理更新数据的缺点,提出基于FCM的自适应增量式聚类算法AIFCM。该算法结合密度和集合的思想,给出一种自动确定聚类初始中心的方法,能在聚类过程中动态改变聚类结果数,改善聚类的质量,减少人为的主观... 针对模糊C-均值(FCM)算法不能很好地处理更新数据的缺点,提出基于FCM的自适应增量式聚类算法AIFCM。该算法结合密度和集合的思想,给出一种自动确定聚类初始中心的方法,能在聚类过程中动态改变聚类结果数,改善聚类的质量,减少人为的主观因素,获得比较符合用户需求的聚类结果,并能在原有聚类结果的基础上简单有效地处理更新数据,过滤噪声数据,较好地避免大量重复计算。 展开更多
关键词 聚类分析 模糊c-均值算法 增量式聚类 AIfcm算法
在线阅读 下载PDF
基于模糊c-均值的设备性能退化评估方法 被引量:19
11
作者 潘玉娜 陈进 李兴林 《上海交通大学学报》 EI CAS CSCD 北大核心 2009年第11期1794-1797,共4页
为了更好地实现基于状态的维护模式,提出了一种基于模糊c-均值聚类的性能退化评估方法.该方法以正常状态和失效时刻的数据为基础,建立智能评估模型,以待测数据隶属于正常状态的程度作为退化指标.以6307滚动轴承为研究对象,对其疲劳寿命... 为了更好地实现基于状态的维护模式,提出了一种基于模糊c-均值聚类的性能退化评估方法.该方法以正常状态和失效时刻的数据为基础,建立智能评估模型,以待测数据隶属于正常状态的程度作为退化指标.以6307滚动轴承为研究对象,对其疲劳寿命加速试验中全寿命周期的性能退化进行评估,结果验证了该方法的可行性和有效性. 展开更多
关键词 模糊c-均值聚类 性能退化评估 轴承
在线阅读 下载PDF
改进的模糊C-均值聚类算法 被引量:24
12
作者 关庆 邓赵红 王士同 《计算机工程与应用》 CSCD 北大核心 2011年第10期27-29,88,共4页
为了克服模糊C-均值(FCM)聚类算法易陷入局部极小值和对初始值敏感的缺点,提出了一种基于改进量子蚁群的模糊聚类算法。将量子计算原理和蚁群算法相结合来改进FCM算法。初期采用量子遗传算法生成信息素分布,后期利用蚁群算法的全局搜索... 为了克服模糊C-均值(FCM)聚类算法易陷入局部极小值和对初始值敏感的缺点,提出了一种基于改进量子蚁群的模糊聚类算法。将量子计算原理和蚁群算法相结合来改进FCM算法。初期采用量子遗传算法生成信息素分布,后期利用蚁群算法的全局搜索性、并行计算性等特点避免聚类陷入局部最优解。实验证明该算法保证了种群的多样性,有较好的全局收敛性,克服了模糊C-均值聚类算法的不足,能有效解决未成熟收敛的问题,使聚类问题最终快速、有效地收敛到全局最优解。 展开更多
关键词 聚类分析 模糊c-均值聚类 蚁群算法 量子计算
在线阅读 下载PDF
基于邻域的模糊C-均值图像分割算法 被引量:7
13
作者 沙秋夫 刘海宾 +1 位作者 何希勤 刘向东 《计算机应用研究》 CSCD 北大核心 2007年第12期379-380,385,共3页
给出了一种改进的模糊C-均值图像分割算法。该算法充分考虑了图像的空间信息,在图像存在噪声的情况下能产生区域一致的分割结果,并可以减少图像噪声。另外,通过引入聚类数目自动获取与聚类中心初始化的算法,一定程度上减少了算法的迭代... 给出了一种改进的模糊C-均值图像分割算法。该算法充分考虑了图像的空间信息,在图像存在噪声的情况下能产生区域一致的分割结果,并可以减少图像噪声。另外,通过引入聚类数目自动获取与聚类中心初始化的算法,一定程度上减少了算法的迭代次数。 展开更多
关键词 模糊c-均值 图像分割 邻域 聚类
在线阅读 下载PDF
改进的模糊C-均值聚类算法研究 被引量:41
14
作者 齐淼 张化祥 《计算机工程与应用》 CSCD 北大核心 2009年第20期133-135,共3页
为解决模糊C-均值(FCM)聚类算法对噪声和孤立点数据敏感、样本分布不均衡的问题,提出了具体的改进和提高的方法:改进隶属度函数,以消除孤立点对聚类结果的影响;为每个样本点赋予一个定量的权值,以区分不同的样本点对于知识发现的不同作... 为解决模糊C-均值(FCM)聚类算法对噪声和孤立点数据敏感、样本分布不均衡的问题,提出了具体的改进和提高的方法:改进隶属度函数,以消除孤立点对聚类结果的影响;为每个样本点赋予一个定量的权值,以区分不同的样本点对于知识发现的不同作用,改善噪音和分布不均衡的样本集的聚类结果。实验结果表明该算法具有更好的健壮性和聚类效果。 展开更多
关键词 模糊c-均值 权值 聚类
在线阅读 下载PDF
基于粒子群优化的模糊C-均值聚类改进算法 被引量:18
15
作者 蒲蓬勃 王鸽 刘太安 《计算机工程与设计》 CSCD 北大核心 2008年第16期4277-4279,共3页
针对模糊C-均值聚类算法(FCM)存在易陷入局部优化的问题,将粒子群优化算法(PSO)和模糊C-均值聚类算法FCM相结合,提出了一种新的模糊聚类算法PSO-FCM。该算法使用PSO算法来代替FCM的迭代过程以实现模糊聚类,具有了很强的全局搜索能力,从... 针对模糊C-均值聚类算法(FCM)存在易陷入局部优化的问题,将粒子群优化算法(PSO)和模糊C-均值聚类算法FCM相结合,提出了一种新的模糊聚类算法PSO-FCM。该算法使用PSO算法来代替FCM的迭代过程以实现模糊聚类,具有了很强的全局搜索能力,从而不用再为得到好的聚类效果而反复选择初值。仿真实验结果表明,提出的模糊聚类算法提高了FCM的搜索能力,具有更好的稳定性和健壮性,优化能力增强,提高了聚类的效率和效果。 展开更多
关键词 全局优化 模糊c-均值聚类算法 粒子群优化算法 聚类 粒子
在线阅读 下载PDF
基于核模糊C-均值和EM混合聚类算法的遥感图像分割 被引量:5
16
作者 王民 张鑫 +2 位作者 贠卫国 卫铭斐 王静 《液晶与显示》 CAS CSCD 北大核心 2017年第12期999-1005,共7页
针对聚类算法在应用中分割速度慢、抑制噪声能力弱等问题,本文提出一种基于核模糊C-均值(Kernel Fuzzy Cmeans,KFCM)和融合期望最大化(EM)算法混合聚类的遥感图像分割。首先给原始KFCM算法引入隐含变量来对像素预定义类别,然后利用EM算... 针对聚类算法在应用中分割速度慢、抑制噪声能力弱等问题,本文提出一种基于核模糊C-均值(Kernel Fuzzy Cmeans,KFCM)和融合期望最大化(EM)算法混合聚类的遥感图像分割。首先给原始KFCM算法引入隐含变量来对像素预定义类别,然后利用EM算法评价预定义的类别是否最优,以此完成对遥感图像的聚类分割。在利用EM算法进行评价时,对KFCM引入空间邻域信息,采用惯性权重对其初始化参数进行优化增强算法效率。与传统的聚类分割方法进行比较,研究结果表明,该方法速度快、效果好、精度也能满足应用要求,具有较高的应用价值。 展开更多
关键词 遥感图像 模糊c-均值 EM 空间邻域 惯性权重
在线阅读 下载PDF
基于粒子群优化的模糊C-均值聚类算法研究 被引量:23
17
作者 王纵虎 刘志镜 陈东辉 《计算机科学》 CSCD 北大核心 2012年第9期166-169,共4页
针对用模糊C-均值聚类算法选择初始聚类中心敏感及模糊加权指数m对模糊C-均值聚类算法的聚类性能影响较大等问题,利用粒子群优化算法的全局寻优能力强及收敛速度较快的特点,结合模糊C-均值算法提出一种新的模糊聚类算法;采用了一种简单... 针对用模糊C-均值聚类算法选择初始聚类中心敏感及模糊加权指数m对模糊C-均值聚类算法的聚类性能影响较大等问题,利用粒子群优化算法的全局寻优能力强及收敛速度较快的特点,结合模糊C-均值算法提出一种新的模糊聚类算法;采用了一种简单有效的粒子编码方法,将初始聚类中心和模糊加权指数m同时进行粒子群优化搜索,在得到最优适应度的同时,m也收敛到一个稳定的最优解,从而有效地解决了上述问题。算法在人工合成数据集和多个UCI数据集上都取得了较好的效果。 展开更多
关键词 聚类 模糊c-均值聚类 粒子群优化 粒子编码 初始聚类中心
在线阅读 下载PDF
基于模糊C-均值聚类的时序概率潮流快速计算方法 被引量:14
18
作者 李国庆 陆为华 +2 位作者 李赫 边竞 王振浩 《电力自动化设备》 EI CSCD 北大核心 2021年第4期116-122,共7页
为衡量光伏出力与负荷的时序变化特性对电力系统运行状态的影响,基于模糊C-均值聚类算法提出一种时序概率潮流快速计算方法。将一天分为24个时段,采用自适应扩散核密度估计法分别建立光伏出力与负荷的概率密度分布模型,提高概率模型局... 为衡量光伏出力与负荷的时序变化特性对电力系统运行状态的影响,基于模糊C-均值聚类算法提出一种时序概率潮流快速计算方法。将一天分为24个时段,采用自适应扩散核密度估计法分别建立光伏出力与负荷的概率密度分布模型,提高概率模型局部适应性,并通过Copula理论描述二者之间的相关关系;利用模糊C-均值聚类法划分光伏出力与负荷场景,利用场景聚类中心与场景发生概率代替蒙特卡洛模拟过程进行概率潮流计算,大幅减少计算次数。基于我国西北某地实际测量数据和IEEE 30节点系统进行仿真分析,结果表明所提方法能在保证准确性的前提下,提高时序概率潮流的计算速度。 展开更多
关键词 扩散核 时序变化特性 模糊c-均值聚类 快速计算 概率潮流
在线阅读 下载PDF
基于遗传搜索权重的模糊C-均值-VIKOR模型的绿色供应商选择 被引量:13
19
作者 徐建中 孙颖 孙晓光 《统计与决策》 CSSCI 北大核心 2021年第4期159-163,共5页
针对绿色供应商数量增多带来巨大计算复杂性的问题,文章提出基于遗传启发式属性权搜索策略优化模糊C-均值(GW-FCM)与VIKOR相结合的绿色供应商选择模型。基于巩固数据挖掘技术,制定优化方案搜索属性权使FCM交替优化,在约束区间内改进属性... 针对绿色供应商数量增多带来巨大计算复杂性的问题,文章提出基于遗传启发式属性权搜索策略优化模糊C-均值(GW-FCM)与VIKOR相结合的绿色供应商选择模型。基于巩固数据挖掘技术,制定优化方案搜索属性权使FCM交替优化,在约束区间内改进属性权,由此得到合理的供应商划分。构建绿色供应商评价指标体系包括:绩效评价指标和环境评价指标,基于上述聚类方法分两步聚类,根据绩效评价值和环境评价值聚类确定最佳绿色供应商集群,最后采用VIKOR结合GA搜索的属性权对最佳绿色供应商集群进行最终排名。利用数据挖掘方法与多准则决策分析解决绿色供应商选择问题,有效降低选择复杂度和决策者工作量,案例分析说明了该方法的有效性和实用性。 展开更多
关键词 遗传算法(GA) 模糊c-均值(fcm) 属性权 VIKOR 绿色供应商
在线阅读 下载PDF
基于模糊C-均值的空间不确定数据聚类 被引量:7
20
作者 肖宇鹏 何云斌 +1 位作者 万静 李松 《计算机工程》 CAS CSCD 北大核心 2015年第10期47-52,共6页
针对现实世界中样本对象的不确定性及样本对象间界限划分的模糊性,提出基于模糊C-均值的空间不确定数据聚类算法UFCM。但由于UFCM算法在聚类过程中涉及大量期望距离的复杂积分计算,导致UFCM算法性能不理想,进而给出改进算法I_UFCM,将空... 针对现实世界中样本对象的不确定性及样本对象间界限划分的模糊性,提出基于模糊C-均值的空间不确定数据聚类算法UFCM。但由于UFCM算法在聚类过程中涉及大量期望距离的复杂积分计算,导致UFCM算法性能不理想,进而给出改进算法I_UFCM,将空间不确定对象聚类问题转化为传统的确定对象聚类问题,采用相似度计算公式减少期望距离的计算量,提高聚类结果的质量。实验结果表明,与UFCM和UK-Means算法相比,I_UFCM算法在空间不确定数据集上具有更好的聚类性能,CUP耗时降低了90%以上。 展开更多
关键词 模糊c-均值 不确定数据 概率密度函数 期望距离 质心
在线阅读 下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部