期刊文献+
共找到1,043篇文章
< 1 2 53 >
每页显示 20 50 100
满足本地差分隐私的混合噪音感知的模糊C均值聚类算法 被引量:1
1
作者 张朋飞 程俊 +4 位作者 张治坤 方贤进 孙笠 王杰 姜茸 《电子与信息学报》 北大核心 2025年第3期739-757,共19页
在大数据和物联网应用中,本地差分隐私(LDP)技术用于保护聚类分析中的用户隐私,但现有方法要么在LDP下交互式地进行聚类,需要消耗大量隐私预算,要么没有同时考虑到聚类数据中蕴含的表示数据质量的高斯噪音以及为满足LDP保护的拉普拉斯噪... 在大数据和物联网应用中,本地差分隐私(LDP)技术用于保护聚类分析中的用户隐私,但现有方法要么在LDP下交互式地进行聚类,需要消耗大量隐私预算,要么没有同时考虑到聚类数据中蕴含的表示数据质量的高斯噪音以及为满足LDP保护的拉普拉斯噪音,致使聚类精度低下。同时,对于衡量用户提交数据和簇心之间的距离选择较为武断,没有充分利用到用户提交的噪音数据中蕴含的噪音模式。为此,该文创新性地提出一种满足LDP的混合噪音感知的模糊C均值聚类算法(mnFCM),该算法的主要思想是同时建模用户上传数据中蕴含的表示用户质量的高斯噪音以及为保护用户数据注入的拉普拉斯噪音,进而设计出混合噪音感知的距离替代传统的欧式距离,来衡量样本数据与簇心间的相似性。特别地,在mnFCM中,该文首先设计了混合噪音感知的距离计算方法,在此基础上给出算法新的目标函数,并基于拉格朗日乘子法设计了求解方法,最后理论上分析了求解算法的收敛性。该文进一步理论分析了mnFCM的隐私、效用和复杂度,分析结果表明所提算法严格满足LDP、相对于对比算法更接近非隐私下的簇心以及和非隐私算法具有接近的复杂度。在两个真实数据集上的实验结果表明,mnFCM在满足LDP下,聚类精度提高了10%~15%。 展开更多
关键词 分析 隐私保护 本地差分隐私 模糊c均值 拉普拉斯机制
在线阅读 下载PDF
基于VMD和FCM聚类算法的海上风机支撑结构损伤识别方法
2
作者 任义建 刁延松 +1 位作者 吕建达 侯敬儒 《振动与冲击》 北大核心 2025年第8期184-191,286,共9页
利用响应和有监督学习算法对运行状态下海上风机支撑结构进行损伤识别时,会遇到响应中能量占比很高的谐波成分影响和有监督学习算法需人工定义标签等问题。为此,利用变分模态分解(variational modal decomposition,VMD)和模糊C均值(fuzz... 利用响应和有监督学习算法对运行状态下海上风机支撑结构进行损伤识别时,会遇到响应中能量占比很高的谐波成分影响和有监督学习算法需人工定义标签等问题。为此,利用变分模态分解(variational modal decomposition,VMD)和模糊C均值(fuzzy C-means,FCM)聚类算法进行海上风机支撑结构损伤识别。为剔除响应中的谐波成分,首先利用VMD对加速度响应进行分解,选取结构模态响应(仅含有结构自振频率)作为分析信号。然后计算模态响应的时域、能量和能量比值及样本熵特征构造特征矩阵,利用主成分分析对特征矩阵进行降维,得到损伤特征矩阵。将损伤特征矩阵输入FCM聚类算法,通过聚类分析得到结构的损伤状态。位移激励下海上风机支撑结构损伤识别模型试验数据验证了该方法的有效性。该方法属于无监督学习算法,无需标注标签且不受谐波成分的影响。 展开更多
关键词 海上风机支撑结构 损伤识别 变分模态分解(VMD) 模糊c均值(fcm)算法 无监督学习算法
在线阅读 下载PDF
农业机器人采摘目标识别技术研究——基于FCM模糊聚类算法 被引量:3
3
作者 冯高峰 《农机化研究》 北大核心 2024年第3期30-33,41,共5页
介绍了FCM(Fuzzy C-Means)模糊聚类算法的原理,采用权重分配的方法对该算法进行了改进,通过建立模糊的相似矩阵,对目标对象的特征聚类图进行分析,并引入隶属度矩阵对FCM算法进行优化,以加快算法的迭代速度。实验结果表明:农业机器人采... 介绍了FCM(Fuzzy C-Means)模糊聚类算法的原理,采用权重分配的方法对该算法进行了改进,通过建立模糊的相似矩阵,对目标对象的特征聚类图进行分析,并引入隶属度矩阵对FCM算法进行优化,以加快算法的迭代速度。实验结果表明:农业机器人采用该方法对农作物轮廓分割识别度较高,算法计算效率较快,验证了其可靠性,该方法可用于目标农作物的分割和目标识别。 展开更多
关键词 农业机器人 fcm 模糊 隶属度矩阵 目标识别
在线阅读 下载PDF
基于非局部信息和子空间的模糊C有序均值聚类的图像分割算法
4
作者 陈阳 黄成泉 +3 位作者 覃小素 彭家磊 雷欢 周丽华 《计算机辅助设计与图形学学报》 北大核心 2025年第3期506-518,共13页
针对模糊C有序均值聚类算法没有考虑图像空间信息,导致难以有效地分割含噪图像的问题,提出一种基于非局部信息和子空间的模糊C有序均值聚类(non-local information and subspace for fuzzy C-ordered means,SFCOM-NLS)算法.首先,利用图... 针对模糊C有序均值聚类算法没有考虑图像空间信息,导致难以有效地分割含噪图像的问题,提出一种基于非局部信息和子空间的模糊C有序均值聚类(non-local information and subspace for fuzzy C-ordered means,SFCOM-NLS)算法.首先,利用图像中给定的相似邻域结构的像素提取当前像素的非局部空间信息;其次,计算每个像素的典型性,并对其进行排序,在每次迭代中更新像素的典型性,提高像素聚类的准确性,解决在聚类过程中存在相似类导致的误分类问题;最后,引入子空间聚类概念,为图像不同维度分配适当的权重,提高彩色图像的分割性能.在含噪合成图像和公开数据集BSDS500,MSRA100和AID上实验结果表明,所提算法的模糊划分系数、模糊划分熵、分割精度和标准化互信息平均值分别达到了95.00%,6.66%,98.77%和95.54%,均优于对比的同类算法. 展开更多
关键词 非局部空间信息 子空间 模糊c有序均值 噪声图像分割 鲁棒性
在线阅读 下载PDF
改进模糊聚类语义分割声环境功能区划图
5
作者 曾宇 姚琨 秦勤 《噪声与振动控制》 北大核心 2025年第2期210-215,共6页
声环境功能区划多采用地理信息系统进行研究,但公开发布的声环境功能区划方案中的文字和图片无法直接用于地理信息系统分析。首先提出改进模糊C均值聚类超像素方法,对声环境功能区划图进行语义分割以获取声功能区信息。接着采用简单线... 声环境功能区划多采用地理信息系统进行研究,但公开发布的声环境功能区划方案中的文字和图片无法直接用于地理信息系统分析。首先提出改进模糊C均值聚类超像素方法,对声环境功能区划图进行语义分割以获取声功能区信息。接着采用简单线性迭代聚类构建超像素,提取声环境功能区划图特征矩阵,基于K-means++改进模糊C均值聚类算法,语义分割超像素粒化的声环境功能区划图,并以声功能区面积占比计算结果偏差为评价指标,分析超像素尺度对分割结果的影响。然后基于不同图像特征矩阵构建方法和聚类中心初始化方法,使用模糊C均值聚类、高斯混合模型聚类、K-medoids聚类语义分割声环境功能区划图,最后比较不同组合方案的声功能区面积占比计算结果偏差,验证方法的有效性。 展开更多
关键词 声学 声环境功能区划图 彩色图像分割 模糊c均值 简单线性迭代 K-means++算法
在线阅读 下载PDF
Canny算子+模糊C聚类融合的红外热成像机场道面积水识别方法
6
作者 蔡靖 王锴 +1 位作者 李岳 戴轩 《科学技术与工程》 北大核心 2024年第28期12382-12390,共9页
为解决基于积水可见光图片处理时,受光照变化影响大、夜晚及恶劣天气下难以成像,或成像图像质量低到无法识别的问题。提出一种利用红外热成像+图像处理技术进行积水区域识别的方法,利用红外成像技术拍摄道面积水图像克服了传统拍照方式... 为解决基于积水可见光图片处理时,受光照变化影响大、夜晚及恶劣天气下难以成像,或成像图像质量低到无法识别的问题。提出一种利用红外热成像+图像处理技术进行积水区域识别的方法,利用红外成像技术拍摄道面积水图像克服了传统拍照方式受光照条件限制的缺陷,进一步针对红外成像积水边界边缘模糊、边缘温度分布无明显规律的特征,提出基于Canny算子和模糊C均值聚类的红外图像积水边缘检测融合算法,并利用该算法对实拍积水红外图像进行处理分析,结果表明:该算法对模糊边界有良好的提取效果,图像分割结果与人工标注的实际面积误差在7%以内,且利用像素点的比值能够快速、准确地获取积水面积,为湿滑跑道道面状况评估提供量化支撑,为飞机在湿滑道面上的安全运行提供有效技术支撑。 展开更多
关键词 积水 红外热成像 边缘检测 模糊c均值
在线阅读 下载PDF
模糊C-均值(FCM)聚类算法的实现 被引量:35
7
作者 孙晓霞 刘晓霞 谢倩茹 《计算机应用与软件》 CSCD 北大核心 2008年第3期48-50,共3页
传统的FCM算法能够将靠近边界的具有固有形状的两个簇合并成为一个大的簇。然而,对于一些稍微复杂的数据,如果没有其它的像去除小簇之类的机制的话,FCM算法很难将非常接近的类聚类到一起。给出的聚类算法是在传统FCM算法的循环之后添加... 传统的FCM算法能够将靠近边界的具有固有形状的两个簇合并成为一个大的簇。然而,对于一些稍微复杂的数据,如果没有其它的像去除小簇之类的机制的话,FCM算法很难将非常接近的类聚类到一起。给出的聚类算法是在传统FCM算法的循环之后添加了去除掉空簇的步骤,解决了上述很难将非常接近的类聚到一个簇中的问题。另外,为便于选出最优结果,在递归之后又添加了计算聚类有效性的步骤。最后用Java实现了该算法并在数据集上进行了实验,证实了改进方法的有效性。 展开更多
关键词 模糊 fcm算法 有效性
在线阅读 下载PDF
一种改进的模糊C-均值(FCM)聚类算法 被引量:13
8
作者 安良 胡勇 +1 位作者 胡良梅 孟玲玲 《合肥工业大学学报(自然科学版)》 CAS CSCD 2003年第3期354-358,共5页
模糊C-均值(FCM)聚类算法受初始化影响较大,在迭代时容易陷入局部极小,鉴于遗传算法(GA)的并行全局搜索能力,文章将遗传算法引入进来对FCM聚类算法加以改进,并对所提出的新算法与经典算法的迭代步数和运行时间进行比较。实验结果表明:... 模糊C-均值(FCM)聚类算法受初始化影响较大,在迭代时容易陷入局部极小,鉴于遗传算法(GA)的并行全局搜索能力,文章将遗传算法引入进来对FCM聚类算法加以改进,并对所提出的新算法与经典算法的迭代步数和运行时间进行比较。实验结果表明:该算法与FCM聚类算法相比收敛速度更快,迭代步数更少。 展开更多
关键词 改进模糊c-均值算法 fcm算法 遗传算法 迭代步数 运行时间
在线阅读 下载PDF
基于FCM和遗传算法的图像模糊聚类分析 被引量:10
9
作者 娄银霞 程铭 +1 位作者 文高进 全惠云 《计算机工程与应用》 CSCD 北大核心 2010年第35期173-176,195,共5页
聚类分析在模式识别和图像处理领域中有着极为重要的意义和广泛的应用前景。常用的聚类分析的方法是模糊C均值算法(FCM),但是FCM算法容易陷入局部最优解。提出一种基于FCM和遗传算法对图像进行模糊聚类分析的方法。对输入图像进行纹理... 聚类分析在模式识别和图像处理领域中有着极为重要的意义和广泛的应用前景。常用的聚类分析的方法是模糊C均值算法(FCM),但是FCM算法容易陷入局部最优解。提出一种基于FCM和遗传算法对图像进行模糊聚类分析的方法。对输入图像进行纹理特征提取,通过主成分分析法对提取的特征向量进行降维处理,降低图像聚类分析算法的复杂度,提高结果的精确度,结合FCM和遗传算法对图像数据进行模糊聚类分析。实验结果表明该方法可以得到较好的分类效果。 展开更多
关键词 模糊c均值 遗传算法 模糊 分析
在线阅读 下载PDF
CRM中的模糊C均值(FCM)客户聚类算法研究 被引量:8
10
作者 梁静国 张亚光 戈华 《哈尔滨工程大学学报》 EI CAS CSCD 2004年第2期257-260,共4页
客户关系管理(CRM)中的客户聚类分析是一个新的研究领域,属于数据挖掘的应用范畴.CRM利用数据挖掘技术发现客户数据背后隐藏的、有用的、未曾预料的知识.包括利用聚类方法划分顾客类别.本文提出用模糊C均值(FuzzyC Means,FCM)聚类算法... 客户关系管理(CRM)中的客户聚类分析是一个新的研究领域,属于数据挖掘的应用范畴.CRM利用数据挖掘技术发现客户数据背后隐藏的、有用的、未曾预料的知识.包括利用聚类方法划分顾客类别.本文提出用模糊C均值(FuzzyC Means,FCM)聚类算法作为客户聚类的方法,得到不同客户群的聚类中心以及客户的隶属度矩阵,为客户群的特征分析提供了量化依据.并采用Matlab6.1为计算工具,最后给出了一个聚类分析实例.实验证明,本文采纳的方法可以得到满意的客户聚类结果. 展开更多
关键词 顾客关系管理(cRM) 模糊c均值(fcm) 客户
在线阅读 下载PDF
直方图模糊约束FCM聚类自适应多阈值图像分割 被引量:27
11
作者 裴继红 谢维信 《电子学报》 EI CAS CSCD 北大核心 1999年第10期38-42,共5页
本文提出了一种新的有效的图像多阈值分割方法.该方法通过对模糊约束直方图目标函数的优化.获得一个最佳模糊约束C划分,根据最大隶属度原则进行图像多阈值化.文中对得到的模糊划分函数进行了分析,同时还讨论了直方图划分类数的... 本文提出了一种新的有效的图像多阈值分割方法.该方法通过对模糊约束直方图目标函数的优化.获得一个最佳模糊约束C划分,根据最大隶属度原则进行图像多阈值化.文中对得到的模糊划分函数进行了分析,同时还讨论了直方图划分类数的自适应确定问题.最后给出了几个典型的实验.理论分析和实验表明了本文方法具有速度快、划分特性良好。 展开更多
关键词 模糊约束 图像分割 fcm 多阈值化 自适应
在线阅读 下载PDF
模糊C-均值(FCM)聚类法与矢量量化法相结合用于说话人识别 被引量:7
12
作者 吴晓娟 韩先花 聂开宝 《电子与信息学报》 EI CSCD 北大核心 2002年第6期845-849,共5页
该文提出了一种将模糊C-均值聚类法与矢量量化法相结合进行说话人识别的方法。该算法将从语音信号中提取的 12阶 LPC(线性预测编码)倒谱系数作为待分类样本的 12个指标,先用矢量量化法求出每个说话人表征特征参数的码书,作为模糊聚类算... 该文提出了一种将模糊C-均值聚类法与矢量量化法相结合进行说话人识别的方法。该算法将从语音信号中提取的 12阶 LPC(线性预测编码)倒谱系数作为待分类样本的 12个指标,先用矢量量化法求出每个说话人表征特征参数的码书,作为模糊聚类算法的聚类中心,最后将待识别的特征矢量以得到的码书为聚类中心,进行聚类识别。该算法所使用的特征参数较少,计算比较简单,但识别率较矢量量化法高。 展开更多
关键词 模糊c-均值(fcm) 模糊 矢量量化 说话人识别 语音特征 语音识别
在线阅读 下载PDF
基于区域生长和FCM模糊聚类的颅内出血CT图像分割 被引量:11
13
作者 汪亮 金福江 陈峻严 《系统仿真学报》 CAS CSCD 北大核心 2014年第2期231-235,共5页
为了准确计算颅内额叶损伤的出血面积,提出了将区域生长、FCM模糊聚类用于额叶出血CT图的分割,提取出CT图中出血的目标区域,实现出血面积的精确计算。用该方法分割出的出血区域面积与CT图中实际的出血面积相对误差在5%左右。同时将该图... 为了准确计算颅内额叶损伤的出血面积,提出了将区域生长、FCM模糊聚类用于额叶出血CT图的分割,提取出CT图中出血的目标区域,实现出血面积的精确计算。用该方法分割出的出血区域面积与CT图中实际的出血面积相对误差在5%左右。同时将该图像分割方法与区域生长、阈值分割为一体的分割方法进行比较,发现当CT图中血块区域与周围的脑组织灰度值差异较小时,区域生长、FCM模糊聚类为一体的图像分割方法的分割结果较为精确。 展开更多
关键词 额叶损伤 出血面积 区域生长 fcm模糊 图像分割
在线阅读 下载PDF
基于FCM的快速模糊聚类算法研究 被引量:9
14
作者 匡平 朱清新 陈旭东 《电子测量与仪器学报》 CSCD 2007年第2期15-20,共6页
为改善FCM算法的运算性能、获得和原FCM算法等价的分类结果,本文提出了基于加权样本的fFCM(fast FCM)算法。此算法首先构造原待聚类集合的权集,并在权集上应用改进的FCM算法——WFCM(weighted FCM)算法快速获得和原FCM算法近似的分割结... 为改善FCM算法的运算性能、获得和原FCM算法等价的分类结果,本文提出了基于加权样本的fFCM(fast FCM)算法。此算法首先构造原待聚类集合的权集,并在权集上应用改进的FCM算法——WFCM(weighted FCM)算法快速获得和原FCM算法近似的分割结果;然后,将得到的分割结果作为FCM算法的初值再次利用FCM算法以获得最终的分割结果。理论证明和相关实验表明,fFCM不仅能获得和原FCM算法等价的分类结果,还具有良好的运算性能,具有广泛的适用性。 展开更多
关键词 模糊c均值 WEIGHTED FUZZY c-Means(Wfcm) 加权样本 图像分割
在线阅读 下载PDF
基于HSFCM模糊聚类的快速多目标车辆跟踪算法 被引量:3
15
作者 章军辉 付宗杰 +3 位作者 郭晓满 李庆 陈大鹏 赵野 《汽车工程》 EI CSCD 北大核心 2021年第10期1419-1426,1471,共9页
为了提高复杂交通环境下多目标数据关联的实时性与可靠性,本文中基于半抑制式模糊聚类(half suppressed fuzzy cmeans clustering,HSFCM)发展了一种快速多目标车辆跟踪算法。首先对多目标车辆跟踪问题进行了数学描述,并建立了相机像素... 为了提高复杂交通环境下多目标数据关联的实时性与可靠性,本文中基于半抑制式模糊聚类(half suppressed fuzzy cmeans clustering,HSFCM)发展了一种快速多目标车辆跟踪算法。首先对多目标车辆跟踪问题进行了数学描述,并建立了相机像素坐标系与世界坐标系的空间映射关系;其次基于模糊理论将点迹-航迹关联问题转换成量测模糊聚类问题,通过求解各候选量测与聚类中心的模糊隶属度,间接计算出联合概率数据关联(joint probability data association,JPDA)算法中不确定性量测与各目标的关联概率,再利用概率加权融合对多目标状态进行滤波估计;再次在车辆密集工况下通过合理调整卡尔曼增益对量测更新进行抑制,以克服车辆跟踪中目标短暂跟丢问题。实车试验与仿真结果验证了该跟踪算法的可行性与有效性。 展开更多
关键词 智能车辆 数据融合 感兴趣目标 状态估计 模糊c均值
在线阅读 下载PDF
基于改进模糊C均值聚类与SMO算法的地铁轨道健康状态评价
16
作者 许以凯 杨艺 +2 位作者 张明凯 赵才友 万壮 《铁道标准设计》 北大核心 2024年第11期53-59,共7页
轨道健康状态评价技术对于保障列车的运行安全与乘客的舒适性有重要意义,为寻求一种新的轨道设备综合评价方法,实现对轨道健康状态的科学评价,提出一种基于改进模糊C均值聚类和序列最小优化算法(SMO)构建轨道健康状态评估分析模型。该... 轨道健康状态评价技术对于保障列车的运行安全与乘客的舒适性有重要意义,为寻求一种新的轨道设备综合评价方法,实现对轨道健康状态的科学评价,提出一种基于改进模糊C均值聚类和序列最小优化算法(SMO)构建轨道健康状态评估分析模型。该模型首先提出包含轨道几何状态和结构状态的综合评价指标体系;其次采用变异系数法计算评价指标的权重系数并代入模糊C均值聚类法,得到各轨道样本的分类结果;在此基础上,再利用序列最小优化算法通过划分数据对轨道健康状态进行评价;最后通过实例分析对该评价模型进行验证并开展研究。研究结果表明,经模型评价的855个轨道单元评价结果中优良比例为94%,预测效果良好,平均误差为5%,进而验证了该模型的指标体系和评价方法的科学性和合理性,并给出了进一步研究优化的方向。本文对各轨道指标统筹综合评价,为地铁轨道工务管理线路质量评价提供一种新思路,使轨道设备管理变得有序可控,减少人力、物力资源的浪费。 展开更多
关键词 地铁 轨道 健康状态评价 变异系数法 模糊c均值 SMO算法
在线阅读 下载PDF
基于空间信息的鲁棒模糊C均值聚类的苗族服饰图像分割算法 被引量:2
17
作者 覃小素 黄成泉 +3 位作者 彭家磊 陈阳 雷欢 周丽华 《毛纺科技》 CAS 北大核心 2024年第1期91-98,共8页
针对苗族服饰图像中破损污渍、折叠痕迹、色彩差异大和噪声破坏等现象所导致的传统模糊C均值聚类(Fuzzy C-means,FCM)算法分割质量不佳问题,提出了基于空间信息鲁棒FCM算法,用于苗族服饰图像分割。通过均值滤波和中值滤波处理空间邻域信... 针对苗族服饰图像中破损污渍、折叠痕迹、色彩差异大和噪声破坏等现象所导致的传统模糊C均值聚类(Fuzzy C-means,FCM)算法分割质量不佳问题,提出了基于空间信息鲁棒FCM算法,用于苗族服饰图像分割。通过均值滤波和中值滤波处理空间邻域信息,对应获得2种方法,并用一个加权参数调节模糊隶属度的稀疏性,旨在加强细节的提取和提高算法对噪声的鲁棒性。实验表明,对于被高斯噪声破坏的图像,基于均值滤波处理的改进算法,其划分系数提高约3.6%,划分熵降低约5.6%;对于被椒盐噪声破坏的图像,基于中值滤波处理的空间约束项的改进算法,划分系数提高约2.7%,划分熵降低约4.3%。该算法提高了对这类苗族服饰图像分割的质量,对于传统文化的传承具有非凡的意义。 展开更多
关键词 苗族服饰图像 模糊c均值 均值滤波 中值滤波 模糊隶属度的稀疏性
在线阅读 下载PDF
基于自适应模糊加权指数的FCM聚类测量图像分割方法 被引量:5
18
作者 李晓冰 《红外技术》 CSCD 北大核心 2013年第3期146-149,共4页
针对采用FCM聚类进行测量图像分割时,模糊加权指数难以确定的问题,通过分析FCM聚类原理,依据测量图像分割的具体要求,根据加权指数对不同模糊聚类过程的作用程度,提出了一种基于自适应模糊加权指数的FCM聚类测量图像分割方法。实验结果... 针对采用FCM聚类进行测量图像分割时,模糊加权指数难以确定的问题,通过分析FCM聚类原理,依据测量图像分割的具体要求,根据加权指数对不同模糊聚类过程的作用程度,提出了一种基于自适应模糊加权指数的FCM聚类测量图像分割方法。实验结果表明:该算法可以减少聚类迭代次数,确保分类的准确性,提高图像分割质量。 展开更多
关键词 图像分割 fcm 模糊加权指数 收敛速度 测量图像
在线阅读 下载PDF
模糊C-均值(FCM)聚类算法的改进 被引量:11
19
作者 付辉 《科学技术与工程》 2007年第13期3121-3123,共3页
针对目前模糊C-均值聚类算法不适用于有噪声和样本不均衡等问题,借助改进算法AFCM和WFCM的思想,提出另一种新的聚类算法。它是AFCM和WAFCM结合的一种算法,但有着更好的健壮性和聚类效果。
关键词 fcm 分析 模糊
在线阅读 下载PDF
基于自适应近邻信息的模糊C均值聚类算法 被引量:1
20
作者 高云龙 李建鹏 +3 位作者 郑兴莘 邵桂芳 祝青园 曹超 《光学精密工程》 EI CAS CSCD 北大核心 2024年第7期1045-1058,共14页
传统的模糊C均值算法直接基于原始数据进行聚类,数据的内在结构可能会被噪声、异常值或其他因素破坏,因此聚类性能会受到影响。为提升FCM算法的鲁棒性,提出了一种基于自适应近邻信息的模糊C均值聚类算法。近邻信息指的是一种基于数据点... 传统的模糊C均值算法直接基于原始数据进行聚类,数据的内在结构可能会被噪声、异常值或其他因素破坏,因此聚类性能会受到影响。为提升FCM算法的鲁棒性,提出了一种基于自适应近邻信息的模糊C均值聚类算法。近邻信息指的是一种基于数据点之间相似度的度量,每个数据点都可以看作其他数据点的近邻,但是不同数据点之间的相似度是不同的。将样本点的近邻信息GX和类中心点的近邻信息GV融入基础FCM模型中,为聚类过程提供更多的数据结构信息,用于指导聚类算法中的簇划分过程,以提升算法的稳定性,并提出了3个迭代算法求解本文提出的聚类模型。与其他先进聚类算法对比,在部分基准数据集上聚类性能有10%以上的提升,同时还从参数敏感性、收敛性、消融实验等方面对算法进行评价。实验结果可以充分显示本文提出的聚类算法的可行性与有效性。 展开更多
关键词 模糊c均值 自适应近邻 算法鲁棒性 迭代算法
在线阅读 下载PDF
上一页 1 2 53 下一页 到第
使用帮助 返回顶部