期刊文献+
共找到1,520篇文章
< 1 2 76 >
每页显示 20 50 100
满足本地差分隐私的混合噪音感知的模糊C均值聚类算法 被引量:1
1
作者 张朋飞 程俊 +4 位作者 张治坤 方贤进 孙笠 王杰 姜茸 《电子与信息学报》 北大核心 2025年第3期739-757,共19页
在大数据和物联网应用中,本地差分隐私(LDP)技术用于保护聚类分析中的用户隐私,但现有方法要么在LDP下交互式地进行聚类,需要消耗大量隐私预算,要么没有同时考虑到聚类数据中蕴含的表示数据质量的高斯噪音以及为满足LDP保护的拉普拉斯噪... 在大数据和物联网应用中,本地差分隐私(LDP)技术用于保护聚类分析中的用户隐私,但现有方法要么在LDP下交互式地进行聚类,需要消耗大量隐私预算,要么没有同时考虑到聚类数据中蕴含的表示数据质量的高斯噪音以及为满足LDP保护的拉普拉斯噪音,致使聚类精度低下。同时,对于衡量用户提交数据和簇心之间的距离选择较为武断,没有充分利用到用户提交的噪音数据中蕴含的噪音模式。为此,该文创新性地提出一种满足LDP的混合噪音感知的模糊C均值聚类算法(mnFCM),该算法的主要思想是同时建模用户上传数据中蕴含的表示用户质量的高斯噪音以及为保护用户数据注入的拉普拉斯噪音,进而设计出混合噪音感知的距离替代传统的欧式距离,来衡量样本数据与簇心间的相似性。特别地,在mnFCM中,该文首先设计了混合噪音感知的距离计算方法,在此基础上给出算法新的目标函数,并基于拉格朗日乘子法设计了求解方法,最后理论上分析了求解算法的收敛性。该文进一步理论分析了mnFCM的隐私、效用和复杂度,分析结果表明所提算法严格满足LDP、相对于对比算法更接近非隐私下的簇心以及和非隐私算法具有接近的复杂度。在两个真实数据集上的实验结果表明,mnFCM在满足LDP下,聚类精度提高了10%~15%。 展开更多
关键词 分析 隐私保护 本地差分隐私 模糊c均值 拉普拉斯机制
在线阅读 下载PDF
基于非局部信息和子空间的模糊C有序均值聚类的图像分割算法
2
作者 陈阳 黄成泉 +3 位作者 覃小素 彭家磊 雷欢 周丽华 《计算机辅助设计与图形学学报》 北大核心 2025年第3期506-518,共13页
针对模糊C有序均值聚类算法没有考虑图像空间信息,导致难以有效地分割含噪图像的问题,提出一种基于非局部信息和子空间的模糊C有序均值聚类(non-local information and subspace for fuzzy C-ordered means,SFCOM-NLS)算法.首先,利用图... 针对模糊C有序均值聚类算法没有考虑图像空间信息,导致难以有效地分割含噪图像的问题,提出一种基于非局部信息和子空间的模糊C有序均值聚类(non-local information and subspace for fuzzy C-ordered means,SFCOM-NLS)算法.首先,利用图像中给定的相似邻域结构的像素提取当前像素的非局部空间信息;其次,计算每个像素的典型性,并对其进行排序,在每次迭代中更新像素的典型性,提高像素聚类的准确性,解决在聚类过程中存在相似类导致的误分类问题;最后,引入子空间聚类概念,为图像不同维度分配适当的权重,提高彩色图像的分割性能.在含噪合成图像和公开数据集BSDS500,MSRA100和AID上实验结果表明,所提算法的模糊划分系数、模糊划分熵、分割精度和标准化互信息平均值分别达到了95.00%,6.66%,98.77%和95.54%,均优于对比的同类算法. 展开更多
关键词 非局部空间信息 子空间 模糊c有序均值 噪声图像分割 鲁棒性
在线阅读 下载PDF
基于VMD和FCM聚类算法的海上风机支撑结构损伤识别方法
3
作者 任义建 刁延松 +1 位作者 吕建达 侯敬儒 《振动与冲击》 北大核心 2025年第8期184-191,286,共9页
利用响应和有监督学习算法对运行状态下海上风机支撑结构进行损伤识别时,会遇到响应中能量占比很高的谐波成分影响和有监督学习算法需人工定义标签等问题。为此,利用变分模态分解(variational modal decomposition,VMD)和模糊C均值(fuzz... 利用响应和有监督学习算法对运行状态下海上风机支撑结构进行损伤识别时,会遇到响应中能量占比很高的谐波成分影响和有监督学习算法需人工定义标签等问题。为此,利用变分模态分解(variational modal decomposition,VMD)和模糊C均值(fuzzy C-means,FCM)聚类算法进行海上风机支撑结构损伤识别。为剔除响应中的谐波成分,首先利用VMD对加速度响应进行分解,选取结构模态响应(仅含有结构自振频率)作为分析信号。然后计算模态响应的时域、能量和能量比值及样本熵特征构造特征矩阵,利用主成分分析对特征矩阵进行降维,得到损伤特征矩阵。将损伤特征矩阵输入FCM聚类算法,通过聚类分析得到结构的损伤状态。位移激励下海上风机支撑结构损伤识别模型试验数据验证了该方法的有效性。该方法属于无监督学习算法,无需标注标签且不受谐波成分的影响。 展开更多
关键词 海上风机支撑结构 损伤识别 变分模态分解(VMD) 模糊c均值(fcm)算法 无监督学习算法
在线阅读 下载PDF
农业机器人采摘目标识别技术研究——基于FCM模糊聚类算法 被引量:3
4
作者 冯高峰 《农机化研究》 北大核心 2024年第3期30-33,41,共5页
介绍了FCM(Fuzzy C-Means)模糊聚类算法的原理,采用权重分配的方法对该算法进行了改进,通过建立模糊的相似矩阵,对目标对象的特征聚类图进行分析,并引入隶属度矩阵对FCM算法进行优化,以加快算法的迭代速度。实验结果表明:农业机器人采... 介绍了FCM(Fuzzy C-Means)模糊聚类算法的原理,采用权重分配的方法对该算法进行了改进,通过建立模糊的相似矩阵,对目标对象的特征聚类图进行分析,并引入隶属度矩阵对FCM算法进行优化,以加快算法的迭代速度。实验结果表明:农业机器人采用该方法对农作物轮廓分割识别度较高,算法计算效率较快,验证了其可靠性,该方法可用于目标农作物的分割和目标识别。 展开更多
关键词 农业机器人 fcm 模糊 隶属度矩阵 目标识别
在线阅读 下载PDF
改进C均值聚类算法识别船用网络异常信息研究
5
作者 赵晓华 赵树升 《舰船科学技术》 北大核心 2025年第11期165-169,共5页
针对船用网络中流量和异常模式随着时间、船舶运行状态等因素而动态变化的特点,为判断网络的异常信息,提出基于改进C均值聚类算法的船用网络异常信息识别方法。该方法结合船用网络传输特性,分析该网络的传输流量情况,结合分析结果通过... 针对船用网络中流量和异常模式随着时间、船舶运行状态等因素而动态变化的特点,为判断网络的异常信息,提出基于改进C均值聚类算法的船用网络异常信息识别方法。该方法结合船用网络传输特性,分析该网络的传输流量情况,结合分析结果通过功率密度谱函数提取船用网络流量信息特征包络值,将提取结果输入基于模态稳定函数的模糊C均值聚类算法中,识别船用网络异常信息。测试结果显示,依据流量数据的包络特征值能够较好的描述网络信息的变化情况,信息识别后的分离性结果均在0.94以上;能够结合稳定函数完成船用网络异常信息分类识别,并且能够依据该函数确定不同异常信息的类别。 展开更多
关键词 c均值 船用网络 异常信息识别 传输流量
在线阅读 下载PDF
基于改进模糊C均值聚类与SMO算法的地铁轨道健康状态评价
6
作者 许以凯 杨艺 +2 位作者 张明凯 赵才友 万壮 《铁道标准设计》 北大核心 2024年第11期53-59,共7页
轨道健康状态评价技术对于保障列车的运行安全与乘客的舒适性有重要意义,为寻求一种新的轨道设备综合评价方法,实现对轨道健康状态的科学评价,提出一种基于改进模糊C均值聚类和序列最小优化算法(SMO)构建轨道健康状态评估分析模型。该... 轨道健康状态评价技术对于保障列车的运行安全与乘客的舒适性有重要意义,为寻求一种新的轨道设备综合评价方法,实现对轨道健康状态的科学评价,提出一种基于改进模糊C均值聚类和序列最小优化算法(SMO)构建轨道健康状态评估分析模型。该模型首先提出包含轨道几何状态和结构状态的综合评价指标体系;其次采用变异系数法计算评价指标的权重系数并代入模糊C均值聚类法,得到各轨道样本的分类结果;在此基础上,再利用序列最小优化算法通过划分数据对轨道健康状态进行评价;最后通过实例分析对该评价模型进行验证并开展研究。研究结果表明,经模型评价的855个轨道单元评价结果中优良比例为94%,预测效果良好,平均误差为5%,进而验证了该模型的指标体系和评价方法的科学性和合理性,并给出了进一步研究优化的方向。本文对各轨道指标统筹综合评价,为地铁轨道工务管理线路质量评价提供一种新思路,使轨道设备管理变得有序可控,减少人力、物力资源的浪费。 展开更多
关键词 地铁 轨道 健康状态评价 变异系数法 模糊c均值 SMO算法
在线阅读 下载PDF
基于空间信息的鲁棒模糊C均值聚类的苗族服饰图像分割算法 被引量:2
7
作者 覃小素 黄成泉 +3 位作者 彭家磊 陈阳 雷欢 周丽华 《毛纺科技》 CAS 北大核心 2024年第1期91-98,共8页
针对苗族服饰图像中破损污渍、折叠痕迹、色彩差异大和噪声破坏等现象所导致的传统模糊C均值聚类(Fuzzy C-means,FCM)算法分割质量不佳问题,提出了基于空间信息鲁棒FCM算法,用于苗族服饰图像分割。通过均值滤波和中值滤波处理空间邻域信... 针对苗族服饰图像中破损污渍、折叠痕迹、色彩差异大和噪声破坏等现象所导致的传统模糊C均值聚类(Fuzzy C-means,FCM)算法分割质量不佳问题,提出了基于空间信息鲁棒FCM算法,用于苗族服饰图像分割。通过均值滤波和中值滤波处理空间邻域信息,对应获得2种方法,并用一个加权参数调节模糊隶属度的稀疏性,旨在加强细节的提取和提高算法对噪声的鲁棒性。实验表明,对于被高斯噪声破坏的图像,基于均值滤波处理的改进算法,其划分系数提高约3.6%,划分熵降低约5.6%;对于被椒盐噪声破坏的图像,基于中值滤波处理的空间约束项的改进算法,划分系数提高约2.7%,划分熵降低约4.3%。该算法提高了对这类苗族服饰图像分割的质量,对于传统文化的传承具有非凡的意义。 展开更多
关键词 苗族服饰图像 模糊c均值 均值滤波 中值滤波 模糊隶属度的稀疏性
在线阅读 下载PDF
一种改进的模糊C-均值(FCM)聚类算法 被引量:13
8
作者 安良 胡勇 +1 位作者 胡良梅 孟玲玲 《合肥工业大学学报(自然科学版)》 CAS CSCD 2003年第3期354-358,共5页
模糊C-均值(FCM)聚类算法受初始化影响较大,在迭代时容易陷入局部极小,鉴于遗传算法(GA)的并行全局搜索能力,文章将遗传算法引入进来对FCM聚类算法加以改进,并对所提出的新算法与经典算法的迭代步数和运行时间进行比较。实验结果表明:... 模糊C-均值(FCM)聚类算法受初始化影响较大,在迭代时容易陷入局部极小,鉴于遗传算法(GA)的并行全局搜索能力,文章将遗传算法引入进来对FCM聚类算法加以改进,并对所提出的新算法与经典算法的迭代步数和运行时间进行比较。实验结果表明:该算法与FCM聚类算法相比收敛速度更快,迭代步数更少。 展开更多
关键词 改进模糊c-均值算法 fcm算法 遗传算法 迭代步数 运行时间
在线阅读 下载PDF
模糊C-均值(FCM)聚类算法的实现 被引量:35
9
作者 孙晓霞 刘晓霞 谢倩茹 《计算机应用与软件》 CSCD 北大核心 2008年第3期48-50,共3页
传统的FCM算法能够将靠近边界的具有固有形状的两个簇合并成为一个大的簇。然而,对于一些稍微复杂的数据,如果没有其它的像去除小簇之类的机制的话,FCM算法很难将非常接近的类聚类到一起。给出的聚类算法是在传统FCM算法的循环之后添加... 传统的FCM算法能够将靠近边界的具有固有形状的两个簇合并成为一个大的簇。然而,对于一些稍微复杂的数据,如果没有其它的像去除小簇之类的机制的话,FCM算法很难将非常接近的类聚类到一起。给出的聚类算法是在传统FCM算法的循环之后添加了去除掉空簇的步骤,解决了上述很难将非常接近的类聚到一个簇中的问题。另外,为便于选出最优结果,在递归之后又添加了计算聚类有效性的步骤。最后用Java实现了该算法并在数据集上进行了实验,证实了改进方法的有效性。 展开更多
关键词 模糊 fcm算法 有效性
在线阅读 下载PDF
模糊C-均值(FCM)聚类法与矢量量化法相结合用于说话人识别 被引量:7
10
作者 吴晓娟 韩先花 聂开宝 《电子与信息学报》 EI CSCD 北大核心 2002年第6期845-849,共5页
该文提出了一种将模糊C-均值聚类法与矢量量化法相结合进行说话人识别的方法。该算法将从语音信号中提取的 12阶 LPC(线性预测编码)倒谱系数作为待分类样本的 12个指标,先用矢量量化法求出每个说话人表征特征参数的码书,作为模糊聚类算... 该文提出了一种将模糊C-均值聚类法与矢量量化法相结合进行说话人识别的方法。该算法将从语音信号中提取的 12阶 LPC(线性预测编码)倒谱系数作为待分类样本的 12个指标,先用矢量量化法求出每个说话人表征特征参数的码书,作为模糊聚类算法的聚类中心,最后将待识别的特征矢量以得到的码书为聚类中心,进行聚类识别。该算法所使用的特征参数较少,计算比较简单,但识别率较矢量量化法高。 展开更多
关键词 模糊c-均值(fcm) 模糊 矢量量化 说话人识别 语音特征 语音识别
在线阅读 下载PDF
CRM中的模糊C均值(FCM)客户聚类算法研究 被引量:8
11
作者 梁静国 张亚光 戈华 《哈尔滨工程大学学报》 EI CAS CSCD 2004年第2期257-260,共4页
客户关系管理(CRM)中的客户聚类分析是一个新的研究领域,属于数据挖掘的应用范畴.CRM利用数据挖掘技术发现客户数据背后隐藏的、有用的、未曾预料的知识.包括利用聚类方法划分顾客类别.本文提出用模糊C均值(FuzzyC Means,FCM)聚类算法... 客户关系管理(CRM)中的客户聚类分析是一个新的研究领域,属于数据挖掘的应用范畴.CRM利用数据挖掘技术发现客户数据背后隐藏的、有用的、未曾预料的知识.包括利用聚类方法划分顾客类别.本文提出用模糊C均值(FuzzyC Means,FCM)聚类算法作为客户聚类的方法,得到不同客户群的聚类中心以及客户的隶属度矩阵,为客户群的特征分析提供了量化依据.并采用Matlab6.1为计算工具,最后给出了一个聚类分析实例.实验证明,本文采纳的方法可以得到满意的客户聚类结果. 展开更多
关键词 顾客关系管理(cRM) 模糊c均值(fcm) 客户
在线阅读 下载PDF
基于自适应近邻信息的模糊C均值聚类算法 被引量:1
12
作者 高云龙 李建鹏 +3 位作者 郑兴莘 邵桂芳 祝青园 曹超 《光学精密工程》 EI CAS CSCD 北大核心 2024年第7期1045-1058,共14页
传统的模糊C均值算法直接基于原始数据进行聚类,数据的内在结构可能会被噪声、异常值或其他因素破坏,因此聚类性能会受到影响。为提升FCM算法的鲁棒性,提出了一种基于自适应近邻信息的模糊C均值聚类算法。近邻信息指的是一种基于数据点... 传统的模糊C均值算法直接基于原始数据进行聚类,数据的内在结构可能会被噪声、异常值或其他因素破坏,因此聚类性能会受到影响。为提升FCM算法的鲁棒性,提出了一种基于自适应近邻信息的模糊C均值聚类算法。近邻信息指的是一种基于数据点之间相似度的度量,每个数据点都可以看作其他数据点的近邻,但是不同数据点之间的相似度是不同的。将样本点的近邻信息GX和类中心点的近邻信息GV融入基础FCM模型中,为聚类过程提供更多的数据结构信息,用于指导聚类算法中的簇划分过程,以提升算法的稳定性,并提出了3个迭代算法求解本文提出的聚类模型。与其他先进聚类算法对比,在部分基准数据集上聚类性能有10%以上的提升,同时还从参数敏感性、收敛性、消融实验等方面对算法进行评价。实验结果可以充分显示本文提出的聚类算法的可行性与有效性。 展开更多
关键词 模糊c均值 自适应近邻 算法鲁棒性 迭代算法
在线阅读 下载PDF
基于耦合空间模糊C均值聚类和推土机距离的变化检测 被引量:1
13
作者 谢江陵 李轶鲲 +2 位作者 李小军 杨树文 魏易从 《遥感信息》 CSCD 北大核心 2024年第3期144-152,共9页
在遥感影像变化检测领域中,当遥感影像受椒盐、高斯和混合噪声污染时,变化检测精度往往无法得到保证。虽然基于空间模糊C均值聚类的有监督变化检测算法能有效实现抗噪声变化检测,但是其人工训练成本和时间成本过高,在实时场景中无法大... 在遥感影像变化检测领域中,当遥感影像受椒盐、高斯和混合噪声污染时,变化检测精度往往无法得到保证。虽然基于空间模糊C均值聚类的有监督变化检测算法能有效实现抗噪声变化检测,但是其人工训练成本和时间成本过高,在实时场景中无法大规模应用。对此,文章将5种空间模糊C均值算法分别与推土机距离(earth mover’s distance, EMD)耦合,实现了5种具有较好抗噪声能力的无监督遥感变化检测算法,能够保证噪声污染下的实时变化检测精度。实验证明,与最近提出的KPCAMNet和GMCD无监督变化检测算法相比,所提出算法能更好地处理受椒盐、高斯和混合噪声污染的遥感影像,具有一定的应用价值。 展开更多
关键词 无监督 抗噪声 变化检测 空间模糊c均值 推土机距离
在线阅读 下载PDF
基于模糊C均值聚类的空—地—井垂直重力梯度数据反演方法 被引量:1
14
作者 张显 侯振隆 +3 位作者 赵福权 秦朋波 赵信阳 王家辉 《石油地球物理勘探》 EI CSCD 北大核心 2024年第3期629-639,共11页
通过重力梯度数据三维反演能够获得地下密度结构模型,用于地质资源勘探等领域。航空、地面和井中观测的重力梯度数据含有不同频率的信息,通过数据联合可以降低反演多解性,提高成像分辨率。对于具有复杂形态的地下异常体,目前这种多尺度... 通过重力梯度数据三维反演能够获得地下密度结构模型,用于地质资源勘探等领域。航空、地面和井中观测的重力梯度数据含有不同频率的信息,通过数据联合可以降低反演多解性,提高成像分辨率。对于具有复杂形态的地下异常体,目前这种多尺度数据联合反演的纵向空间分辨率,尤其是异常体底部的成像分辨率有待提升。针对该问题,开展了航空—地面—井中垂直重力梯度数据的联合反演方法研究。首先,在正则化反演中引入模糊C均值聚类算法,通过在迭代过程中加入聚类约束降低多解性;其次,联合航空、地面和井中垂直重力梯度数据,提出一种联合反演方法,并使用GPU加速计算;然后,将反演应用于理论模型数据与美国文顿盐丘地区重力梯度数据,验证方法的效果,并讨论了井位置对结果的影响;最后,对基于GPU加速的并行反演方法进行性能分析。数据试验证明了模糊C均值聚类算法能够降低反演的多解性,通过联合反演能够获得准确的密度分布,该方法具有一定的抗噪能力;使用异常旁井和穿异常井数据的成像分辨率更高。计算的文顿盐丘地区密度分布与其他学者的结论相近,证明了方法是有效且可行的。试验还表明,GPU并行方法具有较高的加速比,提出的方法能够为地质找矿等研究提供技术支撑。 展开更多
关键词 空—地—井垂直重力梯度 密度反演 模糊c均值 文顿盐丘 GPU加速
在线阅读 下载PDF
基于模糊逻辑COOT优化K调和均值的数据聚类算法
15
作者 戴峦岳 梁宵月 +1 位作者 王帅 王震坡 《广西科学》 北大核心 2024年第5期900-911,共12页
针对K调和均值(K-Harmonic Means, KHM)聚类算法易陷入局部最优的不足,本文结合KHM聚类算法的快速局部开发和白骨顶鸡优化算法(Coot optimization algorithm, COOT)的全局勘探能力,提出一种模糊逻辑COOT优化KHM的数据聚类算法(Fuzzy COO... 针对K调和均值(K-Harmonic Means, KHM)聚类算法易陷入局部最优的不足,本文结合KHM聚类算法的快速局部开发和白骨顶鸡优化算法(Coot optimization algorithm, COOT)的全局勘探能力,提出一种模糊逻辑COOT优化KHM的数据聚类算法(Fuzzy COOT K-Harmonic Means, FCOOTKHM)。将KHM聚类算法生成的初始聚类解输入白骨顶鸡初始种群结构再进行迭代寻优。同时,为了进一步提升COOT的搜索精度,设计模糊逻辑对COOT的收敛因子和领导者种群占比进行自适应调整,均衡算法的搜索与开发能力。使用聚类调和平均值评估种群个体的适应度,结合智能算法启发式搜索对聚类结果迭代寻优。利用加州大学欧文分校(University of California Irvine, UCI)数据库中的7个数据集对FCOOTKHM的聚类性能进行验证分析。结果表明,FCOOTKHM在准确率、精确度、召回率、F度量、Kappa系数和收敛效率等指标上均表现更好,该算法能够实现更精确的数据聚类。 展开更多
关键词 模糊逻辑 模糊系统 白骨顶鸡优化算法 K调和均值 收敛性
在线阅读 下载PDF
IFCM:改进的区间值数据的模糊C-均值聚类算法 被引量:2
16
作者 张忠平 陈丽萍 王爱杰 《计算机工程与设计》 CSCD 北大核心 2008年第24期6320-6322,共3页
对基于区间值数据的模糊聚类算法进行了研究,介绍了具有控制区间大小对聚类结果影响的加权因子的模糊C-均值聚类新算法。针对区间值数据模糊C-均值聚类新算法提出了一个适应距离的弹性系数,使算法得到改进,既能利用传统的FCM算法,又考... 对基于区间值数据的模糊聚类算法进行了研究,介绍了具有控制区间大小对聚类结果影响的加权因子的模糊C-均值聚类新算法。针对区间值数据模糊C-均值聚类新算法提出了一个适应距离的弹性系数,使算法得到改进,既能利用传统的FCM算法,又考虑了区间大小对聚类结果的影响,同时也能发现不规则的聚类子集,使聚类结果更加准确。 展开更多
关键词 区间值数据 模糊c-均值 Ifcm算法 自适应系数 原型
在线阅读 下载PDF
改进模糊聚类语义分割声环境功能区划图
17
作者 曾宇 姚琨 秦勤 《噪声与振动控制》 北大核心 2025年第2期210-215,共6页
声环境功能区划多采用地理信息系统进行研究,但公开发布的声环境功能区划方案中的文字和图片无法直接用于地理信息系统分析。首先提出改进模糊C均值聚类超像素方法,对声环境功能区划图进行语义分割以获取声功能区信息。接着采用简单线... 声环境功能区划多采用地理信息系统进行研究,但公开发布的声环境功能区划方案中的文字和图片无法直接用于地理信息系统分析。首先提出改进模糊C均值聚类超像素方法,对声环境功能区划图进行语义分割以获取声功能区信息。接着采用简单线性迭代聚类构建超像素,提取声环境功能区划图特征矩阵,基于K-means++改进模糊C均值聚类算法,语义分割超像素粒化的声环境功能区划图,并以声功能区面积占比计算结果偏差为评价指标,分析超像素尺度对分割结果的影响。然后基于不同图像特征矩阵构建方法和聚类中心初始化方法,使用模糊C均值聚类、高斯混合模型聚类、K-medoids聚类语义分割声环境功能区划图,最后比较不同组合方案的声功能区面积占比计算结果偏差,验证方法的有效性。 展开更多
关键词 声学 声环境功能区划图 彩色图像分割 模糊c均值 简单线性迭代 K-means++算法
在线阅读 下载PDF
模糊C-均值(FCM)聚类算法的改进 被引量:11
18
作者 付辉 《科学技术与工程》 2007年第13期3121-3123,共3页
针对目前模糊C-均值聚类算法不适用于有噪声和样本不均衡等问题,借助改进算法AFCM和WFCM的思想,提出另一种新的聚类算法。它是AFCM和WAFCM结合的一种算法,但有着更好的健壮性和聚类效果。
关键词 fcm 分析 模糊
在线阅读 下载PDF
基于截断技术的鲁棒模糊C均值聚类
19
作者 高云龙 陈彦光 +2 位作者 李辉堆 史曙光 曹超 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期160-169,178,共11页
[目的]直接利用模糊C均值(FCM)对原始数据进行聚类,容易导致聚类结果受到噪声和离群点的影响,但通常利用松弛技术对样本点模糊隶属度或空间位置关系进行松弛的解决方法只能降低,而无法完全剔除噪声和离群点的影响.为了解决这个问题,提... [目的]直接利用模糊C均值(FCM)对原始数据进行聚类,容易导致聚类结果受到噪声和离群点的影响,但通常利用松弛技术对样本点模糊隶属度或空间位置关系进行松弛的解决方法只能降低,而无法完全剔除噪声和离群点的影响.为了解决这个问题,提出了基于截断技术的鲁棒模糊C均值(TRFCM)聚类算法.[方法]基于模糊局部信息C均值(FLICM)聚类模型,通过引入截断技术,提出TRFCM算法.该算法的主要思路为:(1)利用FLICM,在学习数据聚类结构的同时保留样本点的局部邻域结构;(2)基于FLICM的聚类结果动态调整原始数据,使其满足期望的聚类结构;(3)将聚类结构特征学习与原始数据的调整(即截断掉部分样本点),统一在一个优化框架中,从而实现组合最优化.将TRFCM算法与近年来相关算法进行比较以检验TRFCM的参数敏感性、收敛性、鲁棒性、时效性等性能.[结果]实验包括5个部分:参数敏感性与收敛性分析、鲁棒性检验、图像分割实验、Benchmark数据集实验和各算法计算时间对比实验.在参数敏感性和收敛性分析中,TRFCM算法在合适的范围内对参数不敏感且在大多数情况下可以获得良好的聚类效果.同时,算法对各数据集的聚类均可以在20轮迭代内收敛.在鲁棒性检验中,TRFCM的准确率是81.55%,较FLICM高出9.71个百分点,聚类结果更接近于真实数据分布,这证明了TRFCM对噪声具有良好的鲁棒性.在图像分割实验中,各对比算法对图像的划分在一定程度上都不够准确,部分算法出现了环境划分不完整、不同的部分错分到相同类中、不同的类之间发生重叠等问题.而TRFCM均规避了这些问题,取得了良好的聚类结果.在添加了均值为0、方差为0.05的高斯噪声的图像分割实验中,TRFCM算法对噪声干扰的抑制效果最优.在Benchmark数据集上,对Banknote Authentication、Wine、COIL20、WarpPIE10P、Yale和USPS数据集进行聚类分析,TRFCM在ACC、NMI与purity三种评价指标上都取得了优于其它对比算法的得分.在算法时效性的实验中,在相近的时间内,相较对比算法TRFCM能够获得更好的聚类效果.[结论]将截断技术引入到模糊聚类算法中,可实现对原始数据的动态调整,剔除噪声和离群点对聚类过程的干扰,从而保留更多对聚类有利的数据细节.基于该思路,利用截断技术以相似的方式对以往其他经典的模糊聚类模型进行改进,可以得到一系列的优化算法,为未来的研究提供新的方向. 展开更多
关键词 模糊c均值(fcm) 鲁棒性 截断技术 图像分割
在线阅读 下载PDF
引导模糊C均值聚类算法在联合反演综合解释中的应用
20
作者 陈易周 刘江 +2 位作者 涂齐催 李炳颖 娄敏 《石油地球物理勘探》 EI CSCD 北大核心 2024年第4期865-874,共10页
不同地球物理方法的反演结果常常存在差异,根据不同方法的联合反演结果得到最终合理解释是了解地下结构的关键。为此,提出了一种引导式模糊C均值(FCM)聚类算法,即在FCM聚类算法的基础上,结合现有地质认识,引入先验约束信息指导聚类中心... 不同地球物理方法的反演结果常常存在差异,根据不同方法的联合反演结果得到最终合理解释是了解地下结构的关键。为此,提出了一种引导式模糊C均值(FCM)聚类算法,即在FCM聚类算法的基础上,结合现有地质认识,引入先验约束信息指导聚类中心的确定,对地球物理联合反演结果进行综合定量解释,旨在降低传统人工解释的主观性和局限性。模型测试表明,与传统FCM聚类技术相比,引导FCM聚类技术效果更好,特别是处理复杂地质结构的反演数据时,能够有效地区分不同地质体。实际数据的应用结果证明了引导FCM聚类技术在多属性地球物理联合反演结果综合解释中的应用潜力较大。该技术不仅提升了地球物理数据解释的科学性,而且为地下资源勘探提供了一个更可靠和精确的工具。 展开更多
关键词 模糊c均值 联合反演 综合解释 先验约束信息 多属性
在线阅读 下载PDF
上一页 1 2 76 下一页 到第
使用帮助 返回顶部