期刊文献+
共找到768篇文章
< 1 2 39 >
每页显示 20 50 100
满足本地差分隐私的混合噪音感知的模糊C均值聚类算法 被引量:3
1
作者 张朋飞 程俊 +4 位作者 张治坤 方贤进 孙笠 王杰 姜茸 《电子与信息学报》 北大核心 2025年第3期739-757,共19页
在大数据和物联网应用中,本地差分隐私(LDP)技术用于保护聚类分析中的用户隐私,但现有方法要么在LDP下交互式地进行聚类,需要消耗大量隐私预算,要么没有同时考虑到聚类数据中蕴含的表示数据质量的高斯噪音以及为满足LDP保护的拉普拉斯噪... 在大数据和物联网应用中,本地差分隐私(LDP)技术用于保护聚类分析中的用户隐私,但现有方法要么在LDP下交互式地进行聚类,需要消耗大量隐私预算,要么没有同时考虑到聚类数据中蕴含的表示数据质量的高斯噪音以及为满足LDP保护的拉普拉斯噪音,致使聚类精度低下。同时,对于衡量用户提交数据和簇心之间的距离选择较为武断,没有充分利用到用户提交的噪音数据中蕴含的噪音模式。为此,该文创新性地提出一种满足LDP的混合噪音感知的模糊C均值聚类算法(mnFCM),该算法的主要思想是同时建模用户上传数据中蕴含的表示用户质量的高斯噪音以及为保护用户数据注入的拉普拉斯噪音,进而设计出混合噪音感知的距离替代传统的欧式距离,来衡量样本数据与簇心间的相似性。特别地,在mnFCM中,该文首先设计了混合噪音感知的距离计算方法,在此基础上给出算法新的目标函数,并基于拉格朗日乘子法设计了求解方法,最后理论上分析了求解算法的收敛性。该文进一步理论分析了mnFCM的隐私、效用和复杂度,分析结果表明所提算法严格满足LDP、相对于对比算法更接近非隐私下的簇心以及和非隐私算法具有接近的复杂度。在两个真实数据集上的实验结果表明,mnFCM在满足LDP下,聚类精度提高了10%~15%。 展开更多
关键词 分析 隐私保护 本地差分隐私 模糊c均值聚类 拉普拉斯机制
在线阅读 下载PDF
基于改进模糊C均值聚类与SMO算法的地铁轨道健康状态评价
2
作者 许以凯 杨艺 +2 位作者 张明凯 赵才友 万壮 《铁道标准设计》 北大核心 2024年第11期53-59,共7页
轨道健康状态评价技术对于保障列车的运行安全与乘客的舒适性有重要意义,为寻求一种新的轨道设备综合评价方法,实现对轨道健康状态的科学评价,提出一种基于改进模糊C均值聚类和序列最小优化算法(SMO)构建轨道健康状态评估分析模型。该... 轨道健康状态评价技术对于保障列车的运行安全与乘客的舒适性有重要意义,为寻求一种新的轨道设备综合评价方法,实现对轨道健康状态的科学评价,提出一种基于改进模糊C均值聚类和序列最小优化算法(SMO)构建轨道健康状态评估分析模型。该模型首先提出包含轨道几何状态和结构状态的综合评价指标体系;其次采用变异系数法计算评价指标的权重系数并代入模糊C均值聚类法,得到各轨道样本的分类结果;在此基础上,再利用序列最小优化算法通过划分数据对轨道健康状态进行评价;最后通过实例分析对该评价模型进行验证并开展研究。研究结果表明,经模型评价的855个轨道单元评价结果中优良比例为94%,预测效果良好,平均误差为5%,进而验证了该模型的指标体系和评价方法的科学性和合理性,并给出了进一步研究优化的方向。本文对各轨道指标统筹综合评价,为地铁轨道工务管理线路质量评价提供一种新思路,使轨道设备管理变得有序可控,减少人力、物力资源的浪费。 展开更多
关键词 地铁 轨道 健康状态评价 变异系数法 模糊c均值聚类 SMO算法
在线阅读 下载PDF
基于空间信息的鲁棒模糊C均值聚类的苗族服饰图像分割算法 被引量:3
3
作者 覃小素 黄成泉 +3 位作者 彭家磊 陈阳 雷欢 周丽华 《毛纺科技》 CAS 北大核心 2024年第1期91-98,共8页
针对苗族服饰图像中破损污渍、折叠痕迹、色彩差异大和噪声破坏等现象所导致的传统模糊C均值聚类(Fuzzy C-means,FCM)算法分割质量不佳问题,提出了基于空间信息鲁棒FCM算法,用于苗族服饰图像分割。通过均值滤波和中值滤波处理空间邻域信... 针对苗族服饰图像中破损污渍、折叠痕迹、色彩差异大和噪声破坏等现象所导致的传统模糊C均值聚类(Fuzzy C-means,FCM)算法分割质量不佳问题,提出了基于空间信息鲁棒FCM算法,用于苗族服饰图像分割。通过均值滤波和中值滤波处理空间邻域信息,对应获得2种方法,并用一个加权参数调节模糊隶属度的稀疏性,旨在加强细节的提取和提高算法对噪声的鲁棒性。实验表明,对于被高斯噪声破坏的图像,基于均值滤波处理的改进算法,其划分系数提高约3.6%,划分熵降低约5.6%;对于被椒盐噪声破坏的图像,基于中值滤波处理的空间约束项的改进算法,划分系数提高约2.7%,划分熵降低约4.3%。该算法提高了对这类苗族服饰图像分割的质量,对于传统文化的传承具有非凡的意义。 展开更多
关键词 苗族服饰图像 模糊c均值聚类 均值滤波 中值滤波 模糊隶属度的稀疏性
在线阅读 下载PDF
基于模糊C均值聚类的空—地—井垂直重力梯度数据反演方法 被引量:2
4
作者 张显 侯振隆 +3 位作者 赵福权 秦朋波 赵信阳 王家辉 《石油地球物理勘探》 EI CSCD 北大核心 2024年第3期629-639,共11页
通过重力梯度数据三维反演能够获得地下密度结构模型,用于地质资源勘探等领域。航空、地面和井中观测的重力梯度数据含有不同频率的信息,通过数据联合可以降低反演多解性,提高成像分辨率。对于具有复杂形态的地下异常体,目前这种多尺度... 通过重力梯度数据三维反演能够获得地下密度结构模型,用于地质资源勘探等领域。航空、地面和井中观测的重力梯度数据含有不同频率的信息,通过数据联合可以降低反演多解性,提高成像分辨率。对于具有复杂形态的地下异常体,目前这种多尺度数据联合反演的纵向空间分辨率,尤其是异常体底部的成像分辨率有待提升。针对该问题,开展了航空—地面—井中垂直重力梯度数据的联合反演方法研究。首先,在正则化反演中引入模糊C均值聚类算法,通过在迭代过程中加入聚类约束降低多解性;其次,联合航空、地面和井中垂直重力梯度数据,提出一种联合反演方法,并使用GPU加速计算;然后,将反演应用于理论模型数据与美国文顿盐丘地区重力梯度数据,验证方法的效果,并讨论了井位置对结果的影响;最后,对基于GPU加速的并行反演方法进行性能分析。数据试验证明了模糊C均值聚类算法能够降低反演的多解性,通过联合反演能够获得准确的密度分布,该方法具有一定的抗噪能力;使用异常旁井和穿异常井数据的成像分辨率更高。计算的文顿盐丘地区密度分布与其他学者的结论相近,证明了方法是有效且可行的。试验还表明,GPU并行方法具有较高的加速比,提出的方法能够为地质找矿等研究提供技术支撑。 展开更多
关键词 空—地—井垂直重力梯度 密度反演 模糊c均值聚类 文顿盐丘 GPU加速
在线阅读 下载PDF
基于耦合空间模糊C均值聚类和推土机距离的变化检测 被引量:2
5
作者 谢江陵 李轶鲲 +2 位作者 李小军 杨树文 魏易从 《遥感信息》 CSCD 北大核心 2024年第3期144-152,共9页
在遥感影像变化检测领域中,当遥感影像受椒盐、高斯和混合噪声污染时,变化检测精度往往无法得到保证。虽然基于空间模糊C均值聚类的有监督变化检测算法能有效实现抗噪声变化检测,但是其人工训练成本和时间成本过高,在实时场景中无法大... 在遥感影像变化检测领域中,当遥感影像受椒盐、高斯和混合噪声污染时,变化检测精度往往无法得到保证。虽然基于空间模糊C均值聚类的有监督变化检测算法能有效实现抗噪声变化检测,但是其人工训练成本和时间成本过高,在实时场景中无法大规模应用。对此,文章将5种空间模糊C均值算法分别与推土机距离(earth mover’s distance, EMD)耦合,实现了5种具有较好抗噪声能力的无监督遥感变化检测算法,能够保证噪声污染下的实时变化检测精度。实验证明,与最近提出的KPCAMNet和GMCD无监督变化检测算法相比,所提出算法能更好地处理受椒盐、高斯和混合噪声污染的遥感影像,具有一定的应用价值。 展开更多
关键词 无监督 抗噪声 变化检测 空间模糊c均值聚类 推土机距离
在线阅读 下载PDF
基于自适应近邻信息的模糊C均值聚类算法 被引量:1
6
作者 高云龙 李建鹏 +3 位作者 郑兴莘 邵桂芳 祝青园 曹超 《光学精密工程》 EI CAS CSCD 北大核心 2024年第7期1045-1058,共14页
传统的模糊C均值算法直接基于原始数据进行聚类,数据的内在结构可能会被噪声、异常值或其他因素破坏,因此聚类性能会受到影响。为提升FCM算法的鲁棒性,提出了一种基于自适应近邻信息的模糊C均值聚类算法。近邻信息指的是一种基于数据点... 传统的模糊C均值算法直接基于原始数据进行聚类,数据的内在结构可能会被噪声、异常值或其他因素破坏,因此聚类性能会受到影响。为提升FCM算法的鲁棒性,提出了一种基于自适应近邻信息的模糊C均值聚类算法。近邻信息指的是一种基于数据点之间相似度的度量,每个数据点都可以看作其他数据点的近邻,但是不同数据点之间的相似度是不同的。将样本点的近邻信息GX和类中心点的近邻信息GV融入基础FCM模型中,为聚类过程提供更多的数据结构信息,用于指导聚类算法中的簇划分过程,以提升算法的稳定性,并提出了3个迭代算法求解本文提出的聚类模型。与其他先进聚类算法对比,在部分基准数据集上聚类性能有10%以上的提升,同时还从参数敏感性、收敛性、消融实验等方面对算法进行评价。实验结果可以充分显示本文提出的聚类算法的可行性与有效性。 展开更多
关键词 模糊c均值聚类 自适应近邻 算法鲁棒性 迭代算法
在线阅读 下载PDF
引导模糊C均值聚类算法在联合反演综合解释中的应用
7
作者 陈易周 刘江 +2 位作者 涂齐催 李炳颖 娄敏 《石油地球物理勘探》 EI CSCD 北大核心 2024年第4期865-874,共10页
不同地球物理方法的反演结果常常存在差异,根据不同方法的联合反演结果得到最终合理解释是了解地下结构的关键。为此,提出了一种引导式模糊C均值(FCM)聚类算法,即在FCM聚类算法的基础上,结合现有地质认识,引入先验约束信息指导聚类中心... 不同地球物理方法的反演结果常常存在差异,根据不同方法的联合反演结果得到最终合理解释是了解地下结构的关键。为此,提出了一种引导式模糊C均值(FCM)聚类算法,即在FCM聚类算法的基础上,结合现有地质认识,引入先验约束信息指导聚类中心的确定,对地球物理联合反演结果进行综合定量解释,旨在降低传统人工解释的主观性和局限性。模型测试表明,与传统FCM聚类技术相比,引导FCM聚类技术效果更好,特别是处理复杂地质结构的反演数据时,能够有效地区分不同地质体。实际数据的应用结果证明了引导FCM聚类技术在多属性地球物理联合反演结果综合解释中的应用潜力较大。该技术不仅提升了地球物理数据解释的科学性,而且为地下资源勘探提供了一个更可靠和精确的工具。 展开更多
关键词 模糊c均值聚类 联合反演 综合解释 先验约束信息 多属性
在线阅读 下载PDF
邻域灰度差加权的模糊C均值聚类图像分割算法 被引量:6
8
作者 沙秀艳 何友 王贞俭 《火力与指挥控制》 CSCD 北大核心 2008年第12期34-36,40,共4页
模糊C均值(FCM)算法用于灰度图像分割是一种非监督模糊聚类后再标定的过程,适合灰度图像中存在着模糊和不确定性的特点。但是这种算法没有考虑到样本空间中不同的样本点对分类的贡献不同,因此分割效果不理想。提出了邻域灰度差加权的模... 模糊C均值(FCM)算法用于灰度图像分割是一种非监督模糊聚类后再标定的过程,适合灰度图像中存在着模糊和不确定性的特点。但是这种算法没有考虑到样本空间中不同的样本点对分类的贡献不同,因此分割效果不理想。提出了邻域灰度差加权的模糊C均值聚类算法,实验结果表明,该算法不仅取得了很好的分割效果,而且加快了算法的收敛速度,从而满足了图像分割的有效性、实时性的要求。 展开更多
关键词 图象分割 模糊c均值聚类 加权模糊c均值聚类 邻域灰度差
在线阅读 下载PDF
一种区间型数据的自适应模糊c均值聚类算法 被引量:5
9
作者 谢志伟 王志明 《计算机工程与应用》 CSCD 2012年第17期193-198,237,共7页
针对区间型数据的聚类问题,提出一种自适应模糊c均值聚类算法。该算法一方面基于区间数的中点和半宽度,通过引入区间宽度的影响因子以控制区间大小对聚类结果的影响;另一方面通过引入一个自适应系数,以减少区间型数据的数据结构对聚类... 针对区间型数据的聚类问题,提出一种自适应模糊c均值聚类算法。该算法一方面基于区间数的中点和半宽度,通过引入区间宽度的影响因子以控制区间大小对聚类结果的影响;另一方面通过引入一个自适应系数,以减少区间型数据的数据结构对聚类效果的影响。通过仿真数据和Fish真实数据验证了该算法的有效性,并对聚类结果进行比较和分析。 展开更多
关键词 区间型数据 模糊c均值聚类 自适应系数 自适应模糊c均值聚类
在线阅读 下载PDF
空间模糊C均值聚类的神经切片图像分割方法 被引量:2
10
作者 邹继杰 唐平 +3 位作者 张毅 罗鹏 江小平 汪婷 《计算机工程与应用》 CSCD 2012年第32期164-169,共6页
周围神经切片显微图像具有背景复杂、区域不连续和光照不均匀等特点,应用经典的图像分割算法难以取得有效的分割结果。通过结合初始隶属度概率函数和空间距离来设计空间函数而得到的SFCM聚类算法,并提出SFCM彩色图像分割方法。把图像从... 周围神经切片显微图像具有背景复杂、区域不连续和光照不均匀等特点,应用经典的图像分割算法难以取得有效的分割结果。通过结合初始隶属度概率函数和空间距离来设计空间函数而得到的SFCM聚类算法,并提出SFCM彩色图像分割方法。把图像从RGB颜色空间转换到HIS颜色空间。采用聚类有效性分析指标在直方图快速FCM算法中为HSI各分量确定分类数目和获取SFCM初始化参数。对HIS各分量分别进行SFCM聚类,合并各分量并转换回RGB彩色空间以显示结果。实验结果表明,与标准FCM聚类分割算法相比,新方法能更有效地分割区域不连续的神经切片显微图像。 展开更多
关键词 模糊c均值聚类 空间模糊c均值聚类 彩色图像分割 神经切片 显微图像
在线阅读 下载PDF
基于EEMD和模糊C均值聚类算法诊断发动机曲轴轴承故障 被引量:36
11
作者 张玲玲 廖红云 +2 位作者 曹亚娟 骆诗定 赵懿冠 《内燃机学报》 EI CAS CSCD 北大核心 2011年第4期332-336,共5页
针对发动机振动信号的非平稳性以及特征参数的模糊性特点,提出了一种基于集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)和模糊C均值聚类(Fuzzy Center Mean,FCM)的故障诊断方法,通过对已知故障样本信号进行EEMD分解,... 针对发动机振动信号的非平稳性以及特征参数的模糊性特点,提出了一种基于集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)和模糊C均值聚类(Fuzzy Center Mean,FCM)的故障诊断方法,通过对已知故障样本信号进行EEMD分解,形成初始特征向量矩阵;对该矩阵进行奇异值分解,将矩阵的奇异值组成故障特征向量,标准化后作为FCM的输入,得到分类矩阵和聚类中心;最后通过计算待测故障样本与已知故障样本聚类中心的贴近度实现故障模式识别.故障诊断实例表明,该方法能有效地诊断柴油机曲轴轴承故障. 展开更多
关键词 模糊c均值聚类算法 奇异值分解 经验模式分解 故障诊断 曲轴轴承
在线阅读 下载PDF
基于模糊C均值聚类和Canny算子的红外图像边缘识别与缺陷定量检测 被引量:25
12
作者 唐庆菊 刘俊岩 +2 位作者 王扬 刘元林 梅晨 《红外与激光工程》 EI CSCD 北大核心 2016年第9期274-278,共5页
针对脉冲红外热成像检测缺陷构件时,红外图像噪声较大、边缘信息模糊等特点,提出了一种基于模糊C均值聚类和Canny算子相结合的边缘检测新方法。该方法首先对输入的红外图像进行整体灰度变换,采用模糊C均值聚类对图像进行区域分割、提取... 针对脉冲红外热成像检测缺陷构件时,红外图像噪声较大、边缘信息模糊等特点,提出了一种基于模糊C均值聚类和Canny算子相结合的边缘检测新方法。该方法首先对输入的红外图像进行整体灰度变换,采用模糊C均值聚类对图像进行区域分割、提取和二值化;再将各个区域进行叠加,使红外图像的边缘变得连续;最后,采用Canny算子对处理后的图像进行边缘检测,实现缺陷的识别。在图像边缘检测基础上,分析了图像定位缺陷位置与实际缺陷位置之间的相对误差,并运用物像关系,实现缺陷几何尺寸的定量检测。结果表明:该方法对缺陷边缘识别完整清晰,具有较高的定位精度和抗噪能力,有利于缺陷的识别与定量检测。 展开更多
关键词 红外图像 边缘检测 模糊c均值聚类 cANNY算子 定量检测
在线阅读 下载PDF
应用模糊c均值聚类获取土壤制图所需土壤-环境关系知识的方法研究 被引量:45
13
作者 杨琳 朱阿兴 +5 位作者 李宝林 秦承志 裴韬 刘宝元 李润奎 蔡强国 《土壤学报》 CAS CSCD 北大核心 2007年第5期784-791,共8页
在没有土壤普查专家及土壤图的地区,获取土壤环境间关系的知识是基于知识进行预测性土壤制图中的关键问题。本文建立了一套应用模糊c均值聚类(Fuzzyc-means,FCM)获取土壤环境间关系知识的方法:得到对土壤形成发展具有重要作用的环境因子... 在没有土壤普查专家及土壤图的地区,获取土壤环境间关系的知识是基于知识进行预测性土壤制图中的关键问题。本文建立了一套应用模糊c均值聚类(Fuzzyc-means,FCM)获取土壤环境间关系知识的方法:得到对土壤形成发展具有重要作用的环境因子,建立环境因子数据库;对环境因子进行模糊聚类,得到环境因子组合隶属度分布图;根据隶属度值确定野外采样点;将环境因子组合与土壤类型对应,进而提取土壤-环境关系知识。为检验该方法的有效性,应用所得知识进行土壤制图,通过独立采样点对土壤图进行精度评价。本文在黑龙江鹤山农场一个研究区的应用结果表明,该方法仅需要少量的野外采样即可获得有效的土壤-环境关系知识,为预测性土壤制图提供必需的依据,同时也显著提高了野外采样的效率。 展开更多
关键词 预测性土壤制图 土壤-环境关系知识 模糊c均值聚类方法(FcM) 环境因子组合 土壤-环境推理模型(SoLIM)
在线阅读 下载PDF
基于模糊C均值聚类的作物病害叶片图像分割方法研究 被引量:89
14
作者 毛罕平 张艳诚 胡波 《农业工程学报》 EI CAS CSCD 北大核心 2008年第9期136-140,共5页
为提高作物病害图像的分割效果,根据作物病害图像的特点,提出了一种基于模糊C均值聚类算法(FCM)的作物病害图像自适应分割方法。该方法将像素的灰度与其邻域均值作为FCM的输入特征,变换FCM的隶属度函数使其包含图像的局部邻域特性;通过... 为提高作物病害图像的分割效果,根据作物病害图像的特点,提出了一种基于模糊C均值聚类算法(FCM)的作物病害图像自适应分割方法。该方法将像素的灰度与其邻域均值作为FCM的输入特征,变换FCM的隶属度函数使其包含图像的局部邻域特性;通过聚类有效性验证分析和试验确定模糊C均值聚类算法(FCM)的最优聚类数、模糊加权指数。运用该方法对棉花病害叶片图像进行分割。结果表明:该方法能较好将病斑部分和正常部分分割开,平均分割误差率小于5%,对作物病害图像的分割处理非常有效。 展开更多
关键词 图像分割 作物病害 计算机视觉 模糊c均值聚类 参数选择
在线阅读 下载PDF
基于模糊C均值聚类的光伏阵列故障诊断方法 被引量:44
15
作者 毕锐 丁明 +2 位作者 徐志成 葛虎 郁丹琦 《太阳能学报》 EI CAS CSCD 北大核心 2016年第3期730-736,共7页
提出基于模糊C均值聚类的光伏阵列故障诊断方法。采用基于模糊C均值聚类的方法,对给定外界环境下不同故障类型的故障特征量进行聚类分析,得到故障类型和故障特征量的模糊映射关系;通过基于正态分布的隶属度函数算法,计算待诊断样本与各... 提出基于模糊C均值聚类的光伏阵列故障诊断方法。采用基于模糊C均值聚类的方法,对给定外界环境下不同故障类型的故障特征量进行聚类分析,得到故障类型和故障特征量的模糊映射关系;通过基于正态分布的隶属度函数算法,计算待诊断样本与各故障模式间的隶属度大小。对隶属度大小进行排序,得到待诊断样本的故障类型。通过Matlab仿真验证方法的正确性和有效性。 展开更多
关键词 光伏阵列 故障诊断 模糊c均值聚类 隶属度函数
在线阅读 下载PDF
各向异性权重的模糊C均值聚类图像分割 被引量:26
16
作者 纪则轩 陈强 +1 位作者 孙权森 夏德深 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2009年第10期1451-1459,1466,共10页
传统的模糊C均值聚类算法(FCM)在图像分割中未考虑各个点的灰度特征及其邻域像素的关联程度,导致其对于噪声十分敏感.而各种改进算法虽然较好地克服了图像噪声的影响,但由于使用均值滤波等方法导致分割图像边缘模糊.为此,提出一种基于... 传统的模糊C均值聚类算法(FCM)在图像分割中未考虑各个点的灰度特征及其邻域像素的关联程度,导致其对于噪声十分敏感.而各种改进算法虽然较好地克服了图像噪声的影响,但由于使用均值滤波等方法导致分割图像边缘模糊.为此,提出一种基于各向异性权重的FCM图像分割方法,通过引入新的邻域窗口权重的计算方法,使得中心点邻域内各点具有各向异性的权重;并使用基于灰度级的快速算法,提出了各向异性权重的模糊C均值聚类算法.实验结果表明,文中方法具有较强的抗噪性,对于噪声具有良好的稳定性,分割精度较高. 展开更多
关键词 图像分割 模糊c均值聚类 各向异性权重 抗噪性 局部空间信息
在线阅读 下载PDF
基于模糊C均值聚类和随机森林的短时交通状态预测方法 被引量:32
17
作者 陈忠辉 凌献尧 +2 位作者 冯心欣 郑海峰 徐艺文 《电子与信息学报》 EI CSCD 北大核心 2018年第8期1879-1886,共8页
交通拥堵长期以来是城市面临的主要问题之一,解决交通拥堵瓶颈刻不容缓。准确的短时交通状态预测有利于市民预知交通出行信息,及时采取措施避免陷入拥堵困境。该文提出一种基于模糊C均值聚类(FCM)和随机森林的短时交通状态预测方法。首... 交通拥堵长期以来是城市面临的主要问题之一,解决交通拥堵瓶颈刻不容缓。准确的短时交通状态预测有利于市民预知交通出行信息,及时采取措施避免陷入拥堵困境。该文提出一种基于模糊C均值聚类(FCM)和随机森林的短时交通状态预测方法。首先,利用一种新颖的融合时空信息的自适应多核支持向量机(AMSVM)来预测短时交通流参数,包括流量、速度和占有率。其次,基于FCM算法分析历史交通流,获取历史交通状态信息。最后,利用随机森林算法分析所预测的短时交通流参数,得到最终预测的短时交通状态。该方法在融合时空信息的同时采用随机森林算法应用于短时交通状态预测这一全新的研究领域。实验结果表明,FCM对历史交通状态的评估方式适用于不同的高速路和城市道路场景。其次,随机森林比其它常见的机器学习方法具有更高的预测精度,从而提供实时可靠的短时交通出行信息。 展开更多
关键词 短时交通状态预测 随机森林 模糊c均值聚类 自适应多核支持向量机
在线阅读 下载PDF
一种对称极坐标图像模糊C均值聚类的电主轴失衡故障诊断方法 被引量:12
18
作者 樊红卫 邵偲洁 +3 位作者 张旭辉 马宏伟 曹现刚 景敏卿 《西安交通大学学报》 EI CAS CSCD 北大核心 2019年第12期57-62,86,共7页
为解决电主轴转子不平衡故障的可视化智能识别问题,提出了一种对称极坐标图像和模糊C均值(FCM)聚类相结合的失衡故障诊断新方法。首先对转子时域振动信号进行经验模态分解降噪,按对称极坐标方法将其转化为二维雪花图像,通过灰度共生矩阵... 为解决电主轴转子不平衡故障的可视化智能识别问题,提出了一种对称极坐标图像和模糊C均值(FCM)聚类相结合的失衡故障诊断新方法。首先对转子时域振动信号进行经验模态分解降噪,按对称极坐标方法将其转化为二维雪花图像,通过灰度共生矩阵,提取雪花图像二维特征参数;然后对已知样本信号的特征参数组建故障特征向量,标准化后作为FCM输入,得到分类矩阵和聚类中心;最后计算待测样本和已知故障样本聚类中心贴进度,实现失衡故障识别和分类。在某电主轴系统平台上完成了1800 r/min时转子3种不同失衡状态的诊断试验,在对45组小样本识别中该方法的分类准确率达到73%。 展开更多
关键词 电主轴 不平衡 对称极坐标 模糊c均值聚类 故障诊断
在线阅读 下载PDF
泥石流危险性评价:模糊c均值聚类-支持向量机法 被引量:19
19
作者 王常明 田书文 +2 位作者 王翊虹 阮云凯 丁桂伶 《吉林大学学报(地球科学版)》 EI CAS CSCD 北大核心 2016年第4期1168-1175,共8页
泥石流是一种能够造成灾难性后果的严重自然灾害,准确可靠的泥石流危险性评价对于其预警及防治工作来说至关重要。泥石流的危险性评价方法有很多,模糊c均值聚类(FCM)方法是其中一种应用广泛的分类方法;相比其他方法而言,其无需主观确定... 泥石流是一种能够造成灾难性后果的严重自然灾害,准确可靠的泥石流危险性评价对于其预警及防治工作来说至关重要。泥石流的危险性评价方法有很多,模糊c均值聚类(FCM)方法是其中一种应用广泛的分类方法;相比其他方法而言,其无需主观确定边界,并且能以各级隶属度矩阵为输出结果,方便应用。支持向量机(SVM)是基于结构风险最小化为目标的机器学习理论,以支持向量为算法支撑,具有一定的鲁棒性,并且适合在小样本条件下进行分类。本文选用FCM和SVM联合的方法,开展泥石流危险性的评价;对北京房山区南窖沟泥石流危险性进行分析,并对比其他评价方法所得结果,证明本文提出的评价方法具有较好的效果。 展开更多
关键词 泥石流 危险性分 模糊c均值聚类 支持向量机
在线阅读 下载PDF
基于模糊C均值聚类与Bayes判别的致密油储层分类评价 被引量:12
20
作者 王伟 康胜松 +2 位作者 高峰 郭粉转 张亮 《特种油气藏》 CAS CSCD 北大核心 2020年第5期118-124,共7页
为解决常规致密油储层因缺乏岩心分析资料而难以进行储层分类评价的难题,通过优选属性参数,应用模糊C均值算法划分致密油储层最优类别,再运用Bayes判别分析法建立储层类别与常规测井属性的关系式,利用常规采油井的测井属性判别储层的类... 为解决常规致密油储层因缺乏岩心分析资料而难以进行储层分类评价的难题,通过优选属性参数,应用模糊C均值算法划分致密油储层最优类别,再运用Bayes判别分析法建立储层类别与常规测井属性的关系式,利用常规采油井的测井属性判别储层的类别。现场实践应用表明:利用该方法划分的鄂尔多斯盆地志丹地区长7Ⅱ^6、长7Ⅰ^2射孔砂体储层类别与试油结果一致,研究区203口井储层划分吻合率为89.7%。该研究对高效开发致密油藏具有一定的指导意义。 展开更多
关键词 致密油 储层分 模糊c均值聚类 Bayes判别 储层评价 鄂尔多斯盆地
在线阅读 下载PDF
上一页 1 2 39 下一页 到第
使用帮助 返回顶部