Environmental impact evaluation system boundary of high-speed railway was defined based on the total life cycle theory,and the index system to evaluate the environmental impact of high-speed railway was established wi...Environmental impact evaluation system boundary of high-speed railway was defined based on the total life cycle theory,and the index system to evaluate the environmental impact of high-speed railway was established with the fuzzy analytic hierarchy method,and the matter-element evaluation model was established on the basis of the extension theory.By calculating its comprehensive interrelatedness,the evaluation rank of environment impacts of high-speed railway was determined.The numerical example shows that the model has vast prospect,which can not only expand the application areas of extension theory,but also change the traditional evaluation methods and provide new ideas and means for environmental impact evaluation of high-speed railway.展开更多
In operation,risk arising from power transformer faults is of much uncertainty and complicacy.To timely and objectively control the risks,a transformer risk assessment method based on fuzzy analytic hierarchy process(...In operation,risk arising from power transformer faults is of much uncertainty and complicacy.To timely and objectively control the risks,a transformer risk assessment method based on fuzzy analytic hierarchy process(FAHP) and artificial neural network(ANN) from the perspective of accuracy and quickness is proposed.An analytic hierarchy process model for the transformer risk assessment is built by analysis of the risk factors affecting the transformer risk level and the weight relation of each risk factor in transformer risk calculation is analyzed by application of fuzzy consistency judgment matrix;with utilization of adaptive ability and nonlinear mapping ability of the ANN,the risk factors with large weights are used as input of neutral network,and thus intelligent quantitative assessment of transformer risk is realized.The simulation result shows that the proposed method increases the speed and accuracy of the risk assessment and can provide feasible decision basis for the transformer risk management and maintenance decisions.展开更多
基金Project(2011QNZT062)supported by the Fundamental Research Funds for Central Universities of China
文摘Environmental impact evaluation system boundary of high-speed railway was defined based on the total life cycle theory,and the index system to evaluate the environmental impact of high-speed railway was established with the fuzzy analytic hierarchy method,and the matter-element evaluation model was established on the basis of the extension theory.By calculating its comprehensive interrelatedness,the evaluation rank of environment impacts of high-speed railway was determined.The numerical example shows that the model has vast prospect,which can not only expand the application areas of extension theory,but also change the traditional evaluation methods and provide new ideas and means for environmental impact evaluation of high-speed railway.
基金Project(50977003) supported by the National Natural Science Foundation of China
文摘In operation,risk arising from power transformer faults is of much uncertainty and complicacy.To timely and objectively control the risks,a transformer risk assessment method based on fuzzy analytic hierarchy process(FAHP) and artificial neural network(ANN) from the perspective of accuracy and quickness is proposed.An analytic hierarchy process model for the transformer risk assessment is built by analysis of the risk factors affecting the transformer risk level and the weight relation of each risk factor in transformer risk calculation is analyzed by application of fuzzy consistency judgment matrix;with utilization of adaptive ability and nonlinear mapping ability of the ANN,the risk factors with large weights are used as input of neutral network,and thus intelligent quantitative assessment of transformer risk is realized.The simulation result shows that the proposed method increases the speed and accuracy of the risk assessment and can provide feasible decision basis for the transformer risk management and maintenance decisions.