期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
一种改进的模糊自适应遗传算法 被引量:4
1
作者 田东平 《计算机工程与应用》 CSCD 北大核心 2008年第31期60-63,共4页
模糊自适应遗传算法是将模糊控制器应用于遗传算法性能和参数控制的一种新型进化算法。提出了一种2输入和2输出的改进模糊自适应遗传算法。一方面,算法采用混沌初始化,提高了初始群体的质量;另一方面,算法将群体适应度方差作为模糊控制... 模糊自适应遗传算法是将模糊控制器应用于遗传算法性能和参数控制的一种新型进化算法。提出了一种2输入和2输出的改进模糊自适应遗传算法。一方面,算法采用混沌初始化,提高了初始群体的质量;另一方面,算法将群体适应度方差作为模糊控制器的一个输入参量,来度量群体在空间分布的离散程度。将群体适应度均值商作为模糊控制器的另一个输入参量,来度量群体中个体的多样性。从而自适应地控制算法在进化过程中的交叉概率和变异概率。测试函数仿真结果表明,该算法很好地平衡了"开发"与"探测",取得了较为满意的优化结果。 展开更多
关键词 模糊自适应遗传算法 模糊控制器 方差 均值商 开发 探测
在线阅读 下载PDF
模糊自适应遗传算法在农村电站无功补偿优化中的应用 被引量:1
2
作者 韩世芬 《安徽农业科学》 CAS 北大核心 2008年第8期3057-3058,共2页
运用模糊自适应遗传算法对农村电站无功补偿优化数学模型进行了优化计算,通过实例的计算机仿真,搜索到了电站无功补偿费用最低的优化补偿点,结果符合实际应用情况,表明自适应遗传算法应用于农业工程优化设计计算切实可行。
关键词 模糊自适应遗传算法 无功补偿 优化设计
在线阅读 下载PDF
考虑相关性的风力发电机组多阶段选址定容规划 被引量:18
3
作者 张沈习 程浩忠 李珂 《电网技术》 EI CSCD 北大核心 2014年第1期53-59,共7页
考虑到负荷和风力发电机组(wind turbine generator,WTG)之间存在定的负相关性,文章首先采用拉丁超立方采样(Latin hypercube sampling,LHS)技术和Cholesky分解法排序产生相关性样本,然后以规划期内总成本小为目标,建立了多阶段WTG选址... 考虑到负荷和风力发电机组(wind turbine generator,WTG)之间存在定的负相关性,文章首先采用拉丁超立方采样(Latin hypercube sampling,LHS)技术和Cholesky分解法排序产生相关性样本,然后以规划期内总成本小为目标,建立了多阶段WTG选址定容机会约束规划模型,并采用模糊自适应遗传算法(fuzzy adaptive genetic algorithm,FAGA)进行求解。在FAGA中,设计了种新的模糊逻辑控制器,使得算法在迭代过程中能够动态调整控制参数,增加算法对解空间的搜索能力,从而克服了基本遗传算法容易陷入局部优、收敛速度慢等缺点。33节点配电网算例的仿真分析表明,在进行WTG选址定容规划时不能忽略负荷和WTG之间的相关性。同时,算例仿真结果也验证了FAGA在求解规划模型时的高效性。 展开更多
关键词 配电网 风力发电机组 多阶段 选址定容 相关性 模糊自适应遗传算法
在线阅读 下载PDF
Identification on rock and soil parameters for vibration drilling rock in metal mine based on fuzzy least square support vector machine 被引量:11
4
作者 左红艳 罗周全 +1 位作者 管佳林 王益伟 《Journal of Central South University》 SCIE EI CAS 2014年第3期1085-1090,共6页
A single freedom degree model of drilling bit-rock was established according to the vibration mechanism and its dynamic characteristics. Moreover, a novel identification method of rock and soil parameters for vibratio... A single freedom degree model of drilling bit-rock was established according to the vibration mechanism and its dynamic characteristics. Moreover, a novel identification method of rock and soil parameters for vibration drilling based on the fuzzy least squares(FLS)-support vector machine(SVM) was developed, in which the fuzzy membership function was set by using linear distance, and its parameters, such as penalty factor and kernel parameter, were optimized by using adaptive genetic algorithm. And FLS-SVM identification on rock and soil parameters for vibration drilling was made by changing the input/output data from single freedom degree model of drilling bit-rock. The results of identification simulation and resonance column experiment show that relative error of natural frequency for some hard sand from identification simulation and resonance column experiment is 1.1% and the identification precision based on the fuzzy least squares-support vector machine is high. 展开更多
关键词 rock and soil fuzzy theory vibration excavation least squares-support vector machine IDENTIFICATION
在线阅读 下载PDF
Fuzzy adaptive genetic algorithm based on auto-regulating fuzzy rules 被引量:6
5
作者 喻寿益 邝溯琼 《Journal of Central South University》 SCIE EI CAS 2010年第1期123-128,共6页
There are defects such as the low convergence rate and premature phenomenon on the performance of simple genetic algorithms (SGA) as the values of crossover probability (Pc) and mutation probability (Pro) are fi... There are defects such as the low convergence rate and premature phenomenon on the performance of simple genetic algorithms (SGA) as the values of crossover probability (Pc) and mutation probability (Pro) are fixed. To solve the problems, the fuzzy control method and the genetic algorithms were systematically integrated to create a kind of improved fuzzy adaptive genetic algorithm (FAGA) based on the auto-regulating fuzzy rules (ARFR-FAGA). By using the fuzzy control method, the values of Pc and Pm were adjusted according to the evolutional process, and the fuzzy rules were optimized by another genetic algorithm. Experimental results in solving the function optimization problems demonstrate that the convergence rate and solution quality of ARFR-FAGA exceed those of SGA, AGA and fuzzy adaptive genetic algorithm based on expertise (EFAGA) obviously in the global search. 展开更多
关键词 adaptive genetic algorithm fuzzy rules auto-regulating crossover probability adjustment
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部