期刊文献+
共找到2,429篇文章
< 1 2 122 >
每页显示 20 50 100
基于模糊神经网络-粒子群优化算法的电机直驱操动机构速度环控制参数优化方法
1
作者 黎卫国 马丽娟 +4 位作者 张长虹 杨旭 李明洋 肖曦 王潇 《电气工程学报》 北大核心 2025年第3期20-27,共8页
电机直驱操动机构作为一种融合电力电子器件与永磁同步电机的新型操动机构,具备传动结构简单、控制柔性高、数字化能力强等优势。针对在实际运行工况中,电机直驱操动机构负载的变化导致速度环性能下降的问题,提出一种基于模糊神经网络(F... 电机直驱操动机构作为一种融合电力电子器件与永磁同步电机的新型操动机构,具备传动结构简单、控制柔性高、数字化能力强等优势。针对在实际运行工况中,电机直驱操动机构负载的变化导致速度环性能下降的问题,提出一种基于模糊神经网络(Fuzzy neural network,FNN)-粒子群优化(Particle swarm optimization,PSO)算法的电机直驱操动机构速度环控制参数优化方法,标准PSO算法用于优化电机直驱操动机构中永磁同步电机(Permanent magnet synchronous motor,PMSM)控制系统的速度环PI(Proportional integral,PI)参数,而FNN算法用于优化PSO算法中的惯性权重。首先,建立PMSM数学模型,并分析速度环PI控制器参数设计方法;其次,基于标准PSO算法对电机直驱操动机构中PMSM控制系统速度环PI控制器参数优化进行分析;随后,结合FNN算法对标准PSO算法中的惯性权重进行优化;最终,通过试验验证了所提方法的有效性。试验结果表明,该方法能够提高电机直驱操动机构控制系统速度环性能,为电机直驱操动机构在面对系统惯量变化时的控制性能提升提供了一种有效的解决方案。 展开更多
关键词 高压断路器 操动机构 模糊神经网络 粒子群算法
在线阅读 下载PDF
模糊神经网络下船舶舱室照明亮度调节方法
2
作者 海光美 夏乃兵 《舰船科学技术》 北大核心 2025年第9期84-88,共5页
船舶舱室照明系统会受到多种因素的影响,这些因素往往具有模糊性和不确定性,传统神经网络不具备有效处理上述问题的能力,因此,提出模糊神经网络下船舶舱室照明亮度自动调节方法。采集船舶舱室亮度数据,利用自适应加权算法得到清洗后亮... 船舶舱室照明系统会受到多种因素的影响,这些因素往往具有模糊性和不确定性,传统神经网络不具备有效处理上述问题的能力,因此,提出模糊神经网络下船舶舱室照明亮度自动调节方法。采集船舶舱室亮度数据,利用自适应加权算法得到清洗后亮度数据,并通过余弦定律获得各角度照明亮度。将得到的亮度参数输入至模糊神经网络中进行模糊化处理,转换为模糊语言变量,根据专家知识或经验建立模糊规则库,并根据输入的模糊语言变量和模糊规则库进行模糊推理,得到模糊输出,将模糊输出转换为具体的亮度调节值,通过去模糊化后的输出值调节船舶舱室的照明亮度。实验结果证明所提方法能够完成船舶舱室照明亮度的自动调节,保证舱室内照明亮度的舒适度。 展开更多
关键词 模糊神经网络 船舶舱室 照明亮度 自动调节 余弦定律
在线阅读 下载PDF
基于模糊神经网络在线自学习的多智能体一致性控制
3
作者 张宪霞 唐胜杰 俞寅生 《自动化学报》 北大核心 2025年第3期590-603,共14页
针对多智能体系统分布式一致性控制问题,提出一种新的融合动态模糊神经网络(Dynamic fuzzy neural network,DFNN)和自适应动态规划(Adaptive dynamic programming,ADP)算法的无模型自适应控制方法.类似于强化学习中执行者-评论家结构,D... 针对多智能体系统分布式一致性控制问题,提出一种新的融合动态模糊神经网络(Dynamic fuzzy neural network,DFNN)和自适应动态规划(Adaptive dynamic programming,ADP)算法的无模型自适应控制方法.类似于强化学习中执行者-评论家结构,DFNN和神经网络(Neural network,NN)分别逼近控制策略和性能指标.每个智能体的DFNN执行者从零规则开始,通过在线学习,与其局部邻域的智能体交互而生成和合并规则.最终,每个智能体都有一个独特的DFNN控制器,具有不同的结构和参数,实现了最优的分布式同步控制律.仿真结果表明,本文提出的在线算法在非线性多智能体系统分布式一致性控制中优于传统基于NN的ADP算法. 展开更多
关键词 多智能体系统 自适应动态规划 动态模糊神经网络 分布式一致性控制 在线学习
在线阅读 下载PDF
基于模糊神经网络对抗生成的城市固废焚烧过程二噁英排放预警
4
作者 崔璨麟 汤健 +1 位作者 夏恒 乔俊飞 《控制理论与应用》 北大核心 2025年第4期757-766,共10页
城市固废焚烧(MSWI)过程产生的二噁英(DXN)类剧毒污染物是全世界范围内备受关注的环保指标,进行DXN排放浓度预警是缓解焚烧建厂“邻避效应”和实现城市精准污染防控等难题的关键之一.受限于产生机理上的全流程相关、记忆效应等特性以及... 城市固废焚烧(MSWI)过程产生的二噁英(DXN)类剧毒污染物是全世界范围内备受关注的环保指标,进行DXN排放浓度预警是缓解焚烧建厂“邻避效应”和实现城市精准污染防控等难题的关键之一.受限于产生机理上的全流程相关、记忆效应等特性以及检测技术上的高难度和离线化验上的高成本等原因,DXN建模数据面临着维数高、不确定性强和样本稀疏等问题.对此,本文提出基于模糊神经网络(FNN)对抗生成的DXN排放预警方法.首先,采用基于随机森林(RF)的自适应特征选择算法降低输入变量维数;接着,基于FNN的生成对抗网络(GAN)迭代产生用于预警建模的候选虚拟样本,以缓解不确定性和稀疏性问题;然后,通过多约束选择机制进行虚拟样本筛选以提高样本质量;最后,构建基于真实与虚拟混合样本的DXN排放预警模型.基于北京某MSWI电厂的实际DXN数据验证了所提方法的有效性. 展开更多
关键词 城市固废焚烧 二噁英 模糊神经网络 生成对抗网络 虚拟样本 预警模型
在线阅读 下载PDF
基于模糊神经网络的CFRP感应加热温度控制
5
作者 杨宁 付天宇 +1 位作者 赫彬 史学迁 《工程塑料应用》 北大核心 2025年第6期79-86,共8页
为了提高碳纤维复合材料(CFRP)感应加热过程中温度控制的精确性和抗干扰能力,提出了一种基于模糊神经网络PID的智能控制算法。针对CFRP感应加热系统中存在的非线性、大时滞性及抗干扰能力不足等问题,通过融合模糊逻辑的鲁棒推理能力与... 为了提高碳纤维复合材料(CFRP)感应加热过程中温度控制的精确性和抗干扰能力,提出了一种基于模糊神经网络PID的智能控制算法。针对CFRP感应加热系统中存在的非线性、大时滞性及抗干扰能力不足等问题,通过融合模糊逻辑的鲁棒推理能力与神经网络的自适应学习机制,设计了动态参数自整定控制器。首先,基于电磁-热耦合理论建立了CFRP感应加热系统的传递函数模型,并通过遗传算法对实验数据进行系统辨识。其次,构建了5层模糊神经网络架构(输入层、模糊化层、模糊规则层、神经网络层、反模糊化层),利用误差反向传播机制在线优化隶属度函数参数及模糊规则权重,实现PID参数的动态调整。在MATLAB/Simulink平台上进行仿真验证,结果表明,在无扰动条件下,模糊神经网络PID控制系统的超调量仅为2.4%,较传统PID(超调量19.4%)和模糊PID(超调量13.5%)分别降低87.6%和82.2%,调节时间为570 s,且系统震荡完全消除。在抗干扰测试中,加入阶跃扰动和正弦扰动后,模糊神经网络PID的恢复时间分别为600 s和620 s。实验证明,该方法通过动态优化模糊规则库和PID参数,显著提升了系统的控制精度和抗干扰能力,为解决CFRP感应加热工艺中的温度控制难题提供了有效方案。 展开更多
关键词 碳纤维 复合材料 电磁感应加热 PID控制 模糊神经网络控制
在线阅读 下载PDF
基于RBF模糊神经网络的钢轨侧磨预测
6
作者 杨光 孙庆 王伟 《城市轨道交通研究》 北大核心 2025年第S1期92-95,104,共5页
[目的]随着地铁运营时间延长和列车运行速度提升,钢轨磨损程度日益严重,曲线段钢轨侧磨尤其严重,因此需对曲线段钢轨侧磨的影响因素与变化规律进行深入研究。[方法]分析并找出了影响钢轨侧磨产生及发展的主要因素。基于RBF(径向基)模糊... [目的]随着地铁运营时间延长和列车运行速度提升,钢轨磨损程度日益严重,曲线段钢轨侧磨尤其严重,因此需对曲线段钢轨侧磨的影响因素与变化规律进行深入研究。[方法]分析并找出了影响钢轨侧磨产生及发展的主要因素。基于RBF(径向基)模糊神经网络构建了钢轨侧磨预测模型。将钢轨侧磨主要影响因素作为该模型主要参数,并结合上海轨道交通1号线测量数据进行了仿真预测试验。[结果及结论]该模型的钢轨侧磨预测值较好地拟合了实际的钢轨侧磨变化趋势,预测误差在0~1 mm范围内。根据该模型的钢轨侧磨预测结果能够掌握钢轨侧磨的状态变化趋势,能够为指导钢轨更换或打磨作业提供数据支持。 展开更多
关键词 城市轨道交通 钢轨侧磨 RBF模糊神经网络 预测模型
在线阅读 下载PDF
基于模糊神经网络的PEMFC输出电压自抗扰控制策略
7
作者 杨旭红 于嘉炜 +1 位作者 张苏捷 钱峰伟 《电子测量技术》 北大核心 2025年第4期62-70,共9页
质子交换膜燃料电池存在输出电压不稳定,发电效率低下等问题,需要使用Boost电路进行升压,以此确保电压质量,满足系统需求。根据PEMFC的输出特性,在Matlab/Simulink平台搭建PEMFC以及Boost电路的数学模型,考虑线性自抗扰控制策略对扰动... 质子交换膜燃料电池存在输出电压不稳定,发电效率低下等问题,需要使用Boost电路进行升压,以此确保电压质量,满足系统需求。根据PEMFC的输出特性,在Matlab/Simulink平台搭建PEMFC以及Boost电路的数学模型,考虑线性自抗扰控制策略对扰动具有优异的动态响应速度,提出一种基于模糊神经网络的线性自抗扰控制策略,用于Boost电路的电压环控制,依靠模糊神经网络对线性自抗扰控制器中的关键参数进行整定,以实现控制器的实时优化。通过仿真分析对比不同工况下,FNN-LADRC控制策略与LADRC控制策略下输出电压的性能差异,结果显示,在无扰动情况FNN-LADRC控制策略下的调节时间为5 ms,LADRC控制策略下的调节时间为40 ms,在扰动情况时FNN-LADRC控制策略调节时间更快,抗干扰能力更强。结合绝对误差积分IAE指标和时间乘绝对误差积分指标ITAE指标进行系统整体性分析,验证了所提控制策略的有效性与优越性。 展开更多
关键词 质子交换膜燃料电池 模糊神经网络 线性自抗扰 输出电压
在线阅读 下载PDF
基于模糊神经网络的微电网荷储协调智能控制方法 被引量:5
8
作者 牛焕娜 窦伟 +3 位作者 李春毅 钱立 井天军 陈卫东 《高电压技术》 EI CAS CSCD 北大核心 2024年第7期3019-3028,I0010,I0011,共12页
针对传统比例-积分-微分(proportional integral derivative,PID)控制和模型论控制方法难以应对新型电力系统背景下微电网面临的运行场景复杂多变的问题,提出了基于模糊神经网络的微电网荷储协调智能控制方法。首先确定了微电网模糊控... 针对传统比例-积分-微分(proportional integral derivative,PID)控制和模型论控制方法难以应对新型电力系统背景下微电网面临的运行场景复杂多变的问题,提出了基于模糊神经网络的微电网荷储协调智能控制方法。首先确定了微电网模糊控制输入及输出变量,以平抑净负荷波动及减少储能充放电频次为目的,将微电网控制经验总结成模糊规则表,采用神经网络深度学习算法修正模糊控制模型的隶属度函数中心、宽度和输出权重来提高模型的自适应能力,从而制定了可调控负荷和储能的功率控制系数;进而针对模糊神经网络控制输出的负荷调控需求量在各可调控负荷间分配的问题,提出了基于灵活性供给指标排序的负荷调控优先级选择方法,最终完成了微电网系统储能单元和可调控负荷控制策略的制定。某典型微电网系统算例仿真结果表明,所提方法制定的各可调控负荷与储能控制策略能在避免储能频繁和过度充放电的同时,在并网状态下有效减弱并网功率对上级电网造成的随机扰动,在孤岛状态下能够有效平抑系统功率波动,提升系统运行稳定性。 展开更多
关键词 模糊神经网络 微电网 智能控制 净负荷波动 荷储协调
在线阅读 下载PDF
基于模糊神经网络PID的煤矿掘进机俯仰控制研究 被引量:5
9
作者 毛清华 陈彦璋 +3 位作者 马骋 王川伟 张飞 柴建权 《工矿自动化》 CSCD 北大核心 2024年第8期135-143,共9页
目前煤矿掘进机俯仰控制主要采用PID控制方法,在掘进机俯仰控制时变性与液压系统非线性情况下的控制精度不高。掘进机俯仰控制通过控制液压缸行程实现,将传统PID算法与模糊控制、神经网络等相结合,可有效提高液压缸行程控制精度。提出... 目前煤矿掘进机俯仰控制主要采用PID控制方法,在掘进机俯仰控制时变性与液压系统非线性情况下的控制精度不高。掘进机俯仰控制通过控制液压缸行程实现,将传统PID算法与模糊控制、神经网络等相结合,可有效提高液压缸行程控制精度。提出了一种基于模糊神经网络PID的煤矿掘进机俯仰控制方法。通过分析掘进机支撑部运动学关系,得到俯仰角与支撑部液压缸的数学关系;介绍了掘进机俯仰控制液压系统工作原理,建立了液压系统及其传递函数模型;将模糊控制与神经网络相结合,形成模糊神经网络,利用模糊神经网络优化PID控制参数,再结合支撑机构数学模型和液压系统传递函数模型,建立掘进机俯仰角模糊神经网络PID控制模型,实现煤矿掘进机俯仰机构自动精确控制。该方法可使掘进机俯仰机构更加快速、准确到达预设位置,解决掘进机俯仰控制中的时变性与非线性难题。仿真结果表明:模糊神经网络PID控制算法相较于模糊PID和PID控制算法,跟踪误差分别降低了69.34%和74.49%。通过液压缸位移控制模拟煤矿掘进机在突变工况和跟随工况下的俯仰控制,结果表明:模糊神经网络PID控制算法相比模糊PID和PID控制算法,俯仰控制跟踪误差最小,对位置信号的平均响应时间分别缩短了27.22%和50.33%,动态控制性能更好。 展开更多
关键词 掘进机俯仰控制 俯仰角 模糊神经网络PID 液压系统 液压缸位移控制 支撑机构
在线阅读 下载PDF
基于模糊神经网络的氢液化氦气压力PID控制 被引量:2
10
作者 李安琪 秦可欣 +1 位作者 杨思锋 兰玉岐 《低温工程》 CAS CSCD 北大核心 2024年第2期92-98,共7页
为了解决氢液化装置氦气压力调节系统超调量大、响应速度慢、调节时间长、控制参数无法在线整定等问题,针对系统具有非线性和时变性的特点,设计了基于模糊神经网络的PID控制器以及基于双曲正切函数的改进型激活函数。仿真结果表明:相比... 为了解决氢液化装置氦气压力调节系统超调量大、响应速度慢、调节时间长、控制参数无法在线整定等问题,针对系统具有非线性和时变性的特点,设计了基于模糊神经网络的PID控制器以及基于双曲正切函数的改进型激活函数。仿真结果表明:相比传统PID控制或模糊PID控制,采用模糊神经网络PID控制的系统动态性能显著改善,使得氢液化装置的氦气压力调节更加稳定可靠。 展开更多
关键词 氦气压力调节系统 模糊神经网络 PID控制 压力控制
在线阅读 下载PDF
基于有效性分析的自组织模糊神经网络建模方法 被引量:1
11
作者 王雪峰 李文静 乔俊飞 《控制工程》 CSCD 北大核心 2024年第3期463-469,共7页
提出了一种基于有效性分析的自组织模糊神经网络(self-organizingfuzzyneural network based on effectiveness analysis, SOEFNN)建模方法。首先,提出了一种针对模糊规则的有效性评价指标,利用样本与规则层输出之间的映射关系进行网络... 提出了一种基于有效性分析的自组织模糊神经网络(self-organizingfuzzyneural network based on effectiveness analysis, SOEFNN)建模方法。首先,提出了一种针对模糊规则的有效性评价指标,利用样本与规则层输出之间的映射关系进行网络模型的有效性分析,通过累积触发的方式实现相应模糊规则的增加或删减,使网络模型在能够处理复杂非线性问题的同时降低其冗余性,使模型更为紧凑。采用梯度下降算法对网络模型进行训练。然后,对所提出的SOEFNN模型进行非线性系统仿真实验和污水处理过程中的出水生化需氧量预测建模,并与其他自组织模糊神经网络模型进行对比。仿真结果表明,所提出的SOEFNN模型能够很好地实现结构和参数的自适应调整,并且具有较好的逼近能力。 展开更多
关键词 有效性分析 自组织模糊神经网络 梯度下降算法 网络建模
在线阅读 下载PDF
基于深度模糊神经网络的太阳总辐射预测研究 被引量:3
12
作者 乔楠 蒋波涛 +2 位作者 郑雨 刘燕东 王锦 《太阳能学报》 EI CAS CSCD 北大核心 2024年第2期59-64,共6页
提出一种基于深度模糊神经网络的太阳总辐射预测模型。首先利用Pearson相关系数分析太阳总辐射关键影响因素,其次利用深度学习多隐含层所具有的特征提取优势将模糊神经网络模块重复连接,构建深度模糊神经网络模型,并使用蝗虫优化算法对... 提出一种基于深度模糊神经网络的太阳总辐射预测模型。首先利用Pearson相关系数分析太阳总辐射关键影响因素,其次利用深度学习多隐含层所具有的特征提取优势将模糊神经网络模块重复连接,构建深度模糊神经网络模型,并使用蝗虫优化算法对其中心值和宽度进行优化。利用所提太阳总辐射预测模型对5个气象站点的相关数据进行仿真实验,并对结果进行分析。仿真结果表明:所提预测模型较其他模型具有较高的预测精度,验证了模型的有效性,可满足无辐射监测站点太阳总辐射预测的需要。 展开更多
关键词 太阳能 太阳辐射 预测 深度模糊神经网络 蝗虫优化算法
在线阅读 下载PDF
永磁同步电机变结构模糊神经网络控制策略 被引量:3
13
作者 梁国伟 康忠健 《组合机床与自动化加工技术》 北大核心 2024年第7期83-88,共6页
为改善永磁同步电机矢量控制技术在复杂工况下控制器参数不能做出实时调整导致控制性能差的问题,分析了模糊逻辑与神经网络控制原理,提出了一种基于高斯径向基神经网络与模糊控制的相结合的智能控制策略。以转速误差以及误差的变化率为... 为改善永磁同步电机矢量控制技术在复杂工况下控制器参数不能做出实时调整导致控制性能差的问题,分析了模糊逻辑与神经网络控制原理,提出了一种基于高斯径向基神经网络与模糊控制的相结合的智能控制策略。以转速误差以及误差的变化率为依据构建增量补偿式二维变结构模糊神经网络PID控制器(deformable fuzzy neural network,DFNN)通过RBF神经网络参数辨识器获取永磁同步电机的雅可比信息矩阵(Jacobian matrix),通过变结构算法确定变结构模糊神经网络的结构信息。在MATLAB/Simulink中仿真结果表明,该控制系统提升了电机启动以及目标转速发生改变时的响应速度,同时降低了超调量,在负载转矩存在扰动时转速变化小,且能够快速回归至给定值,优化了矢量控制系统的性能。 展开更多
关键词 永磁同步电机 矢量控制技术 智能控制 变结构模糊神经网络
在线阅读 下载PDF
基于改进粒子群区间二型模糊神经网络的MPPT控制研究 被引量:3
14
作者 李凯 姜新正 《太阳能学报》 EI CAS CSCD 北大核心 2024年第5期556-564,共9页
针对太阳能发电单元最大功率点控制(MPPT)在复杂工况条件下存在的振荡、跟踪耗时长、精度较低的问题,提出一种基于改进区间二型模糊神经网络的预测控制模型。首先将减法聚类与区间二型模糊均值聚类算法相结合,辨识模型前件模糊规则层结... 针对太阳能发电单元最大功率点控制(MPPT)在复杂工况条件下存在的振荡、跟踪耗时长、精度较低的问题,提出一种基于改进区间二型模糊神经网络的预测控制模型。首先将减法聚类与区间二型模糊均值聚类算法相结合,辨识模型前件模糊规则层结构,计算得到聚类中心;其次,基于自导式粒子群算法优化后件权重层权值参数,进而提升网络全局寻优能力;最后,通过与TS模糊神经网络模型、基于反向传播算法的区间二型模糊神经网络模型进行仿真对比,验证所提模型在不同工况下对最大功率点追踪的快速性与精确性。 展开更多
关键词 光伏发电 最大功率点跟踪 预测控制 模糊神经网络 模糊聚类 粒子群算法
在线阅读 下载PDF
基于动态模糊神经网络的出水含氮参数软测量方法
15
作者 蒙西 张寅 乔俊飞 《控制理论与应用》 EI CAS CSCD 北大核心 2024年第12期2383-2392,共10页
针对城市污水处理过程出水氨氮(NH_(4)^(+)-N)和出水总氮(TN)难以实时准确检测的问题,文中提出了一种基于动态模糊神经网络(DFNN)的出水含氮参数软测量方法.首先,采用自组织增删机制和快速二阶学习算法构建模糊神经网络(FNN),以快速获... 针对城市污水处理过程出水氨氮(NH_(4)^(+)-N)和出水总氮(TN)难以实时准确检测的问题,文中提出了一种基于动态模糊神经网络(DFNN)的出水含氮参数软测量方法.首先,采用自组织增删机制和快速二阶学习算法构建模糊神经网络(FNN),以快速获得结构精简的软测量模型;其次,引入自适应激活强度阈值设计FNN分级更新策略,确保软测量模型在非平稳环境下的预测精度;最后,通过基准仿真1号模型(BSM1)平台的数据验证了DFNN软测量方法的有效性,实验结果表明,所提出的方法能够实现出水NH_(4)^(+)-N和出水TN的在线精准检测. 展开更多
关键词 城市污水处理过程 模糊神经网络 分级更新 出水含氮量 软测量
在线阅读 下载PDF
区间二型模糊神经网络的遥感影像分类
16
作者 桂琪皓 王春艳 《遥感信息》 CSCD 北大核心 2024年第6期130-138,共9页
针对遥感影像分类中的不确定性挑战,提出了一种创新的区间二型模糊神经网络。算法整合了区间二型模糊逻辑系统(interval type-2 fuzzy logic system,IT2FLS)和神经网络的优势,以增强模型处理不确定性的能力及其自适应特征学习性能。通... 针对遥感影像分类中的不确定性挑战,提出了一种创新的区间二型模糊神经网络。算法整合了区间二型模糊逻辑系统(interval type-2 fuzzy logic system,IT2FLS)和神经网络的优势,以增强模型处理不确定性的能力及其自适应特征学习性能。通过双重模糊器配置,包括模糊隶属函数参数的区间二型模糊器和基于嵌套的区间二型模糊器,精确捕捉遥感影像中的不确定性因素。新加入的模糊规则库和推理机减少了对模糊器中先验知识的依赖,同时增强了模型的鲁棒性。在DLRSD数据集中针对网球场场景的实验表明,与现有的模糊神经网络方法相比,该算法在分类准确率上提高了14.77%。在WHDLD数据集上的测试也显示出5.11%的性能提升,证明了该模型的有效性和优越性。 展开更多
关键词 模糊神经网络 模糊逻辑系统 不确定性建模 双重模糊 遥感影像分类
在线阅读 下载PDF
小波模糊神经网络在绝缘子污秽在线监测中的应用 被引量:7
17
作者 岳良顺 刘念 +1 位作者 梁杉 张欢 《高电压技术》 EI CAS CSCD 北大核心 2010年第10期2483-2487,共5页
为了实现电气设备在线监测的智能化和自动化,提出了基于小波模糊神经网络的绝缘子在线监测的方法。鉴于模糊神经网络具有良好的学习性及其很强的模式识别能力以及小波对含噪泄漏电流信号有很好的去噪能力,故提出了小波理论和模糊神经网... 为了实现电气设备在线监测的智能化和自动化,提出了基于小波模糊神经网络的绝缘子在线监测的方法。鉴于模糊神经网络具有良好的学习性及其很强的模式识别能力以及小波对含噪泄漏电流信号有很好的去噪能力,故提出了小波理论和模糊神经网络相结合的小波模糊神经网络。在实验室模拟实验和现场实测数据的基础上,分析了环境因素对不同污秽程度绝缘子外部电气特性的影响,通过选择环境温度和湿度,泄漏电流有效值,泄漏电流峰值及泄漏电流脉冲频率等变量作为其输入变量,并将其用于对绝缘子污秽程度在线监测结果的模糊综合评定。同时也介绍了基于小波模糊神经网络的污秽评定模型的构建过程,通过部分实验数据验证了该方法的可行性。通过此方法,监控人员可以实时在线监测变电站实时绝缘状况,同时可减少电网因绝缘问题引起的故障,在保证电网安全运行方面有突出贡献。 展开更多
关键词 小波模糊神经网络 绝缘子 小波变换 模糊神经网络 小波神经网络 模糊综合评定
在线阅读 下载PDF
基于模糊神经网络系统的结构主动控制 被引量:7
18
作者 李宏男 李宏宇 董松员 《沈阳建筑大学学报(自然科学版)》 EI CAS 2005年第2期99-102,共4页
目的应用自适应模糊神经网络对多维地震动下结构的振动进行主动控制.方法用这种自适应模糊神经网络作为主动控制器,以结构的位移和加速度作为输入,计算出主动控制力.结果将计算的主动控制力输入到结构的动力方程中,结构的位移响应有了... 目的应用自适应模糊神经网络对多维地震动下结构的振动进行主动控制.方法用这种自适应模糊神经网络作为主动控制器,以结构的位移和加速度作为输入,计算出主动控制力.结果将计算的主动控制力输入到结构的动力方程中,结构的位移响应有了较大幅度地减少.同被动控制相比有较大提高.结论自适应模糊神经网络是一种适用于对结构进行主动控制的智能算法。该控制系统无需引入结构的运动模型和精确参数;对复杂的结构易于建模;同被动控制相比其适应力强,消振迅速而且效果良好. 展开更多
关键词 模糊神经网络系统 结构主动控制 自适应模糊神经网络 主动控制力 被动控制 多维地震动 动力方程 位移响应 智能算法 运动模型 控制系统 控制器 加速度 大幅度 适应力 计算 相比
在线阅读 下载PDF
基于自组织模糊神经网络的出水总磷预测 被引量:15
19
作者 乔俊飞 周红标 《控制理论与应用》 EI CAS CSCD 北大核心 2017年第2期224-232,共9页
针对污水处理过程出水总磷预测问题,本文提出一种基于改进Levenberg--Marquardt(improved Levenberg--Marquardt,ILM)学习算法和奇异值分解(singular value decomposition,SVD)的适于在线建模的自组织模糊神经网络(fuzzy neural network... 针对污水处理过程出水总磷预测问题,本文提出一种基于改进Levenberg--Marquardt(improved Levenberg--Marquardt,ILM)学习算法和奇异值分解(singular value decomposition,SVD)的适于在线建模的自组织模糊神经网络(fuzzy neural network,FNN)预测方法.ILM-SVDFNN采用改进LM学习算法对隶属函数中心、宽度和输出权值进行训练.在参数自适应学习的同时,采用单边Jacobi变换实现规则层输出阵的奇异值分解,根据奇异值定义增长和修剪指标实现规则层神经元在线动态调整.此外,证明了所提方法在网络结构固定和调整阶段的收敛性.最后,利用典型非线性系统辨识、Mackey-Glass时间序列预测和实际污水处理过程出水总磷预测实验进行验证.仿真结果显示所设计的自组织模糊神经网络结构紧凑且预测精度较高,较好地满足了污水处理厂对出水总磷检测精度和实时性的要求. 展开更多
关键词 出水总磷 模糊神经网络 自组织模糊神经网络 改进Levenberg--Marquardt 奇异值分解
在线阅读 下载PDF
基于补偿模糊神经网络和线性模型的短期电力负荷预测 被引量:3
20
作者 耿伟华 孙衢 李兴源 《电网技术》 EI CSCD 北大核心 2006年第23期1-5,共5页
在考虑了气象因素对负荷的影响的基础上,提出了一种补偿模糊神经网络和线性模型相结合的短期电力负荷预测新方法。首先采用补偿模糊神经网络求出峰、谷负荷,然后利用线性外推法求出未来1日中24个时刻的负荷值。该方法具有神经网络和线... 在考虑了气象因素对负荷的影响的基础上,提出了一种补偿模糊神经网络和线性模型相结合的短期电力负荷预测新方法。首先采用补偿模糊神经网络求出峰、谷负荷,然后利用线性外推法求出未来1日中24个时刻的负荷值。该方法具有神经网络和线性模型的优点,实例仿真结果表明其具有较快的收敛速度、较高的预测精度和较强的鲁棒性。 展开更多
关键词 短期负荷预测 补偿模糊神经网络 模糊神经网络 隶属函数 线性外推法
在线阅读 下载PDF
上一页 1 2 122 下一页 到第
使用帮助 返回顶部