期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一般严格反馈型非线性系统的自适应控制 被引量:4
1
作者 张承进 亓学广 《控制理论与应用》 EI CAS CSCD 北大核心 2006年第4期621-626,共6页
研究一般严格反馈型非线性系统的控制问题.假设系统的对象模型、状态均未知,只有输出是可测的.应用自适应模糊神经推断系统辨识对象模型,状态观测器设计为Luenberger型,控制器由反步控制、变结构控制和3层神经网络直接控制综合而成.... 研究一般严格反馈型非线性系统的控制问题.假设系统的对象模型、状态均未知,只有输出是可测的.应用自适应模糊神经推断系统辨识对象模型,状态观测器设计为Luenberger型,控制器由反步控制、变结构控制和3层神经网络直接控制综合而成.理论分析和仿真研究都说明此方案能够有效地控制只有输出可测的一般严格反馈型非线性系统. 展开更多
关键词 严格反馈 非线性系统 自适应控制 模糊神经推断系统 状态观测器
在线阅读 下载PDF
Parametric optimization of friction stir welding process of age hardenable aluminum alloys-ANFIS modeling 被引量:2
2
作者 D.Vijayan V.Seshagiri Rao 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第8期1847-1857,共11页
A comparative approach was performed between the response surface method(RSM) and the adaptive neuro-fuzzy inference system(ANFIS) to enhance the tensile properties, including the ultimate tensile strength and the ten... A comparative approach was performed between the response surface method(RSM) and the adaptive neuro-fuzzy inference system(ANFIS) to enhance the tensile properties, including the ultimate tensile strength and the tensile elongation, of friction stir welded age hardenable AA6061 and AA2024 aluminum alloys. The effects of the welding parameters, namely the tool rotational speed, welding speed, axial load and pin profile, on the ultimate tensile strength and the tensile elongation were analyzed using a three-level, four-factor Box-Behnken experimental design. The developed design was utilized to train the ANFIS models. The predictive capabilities of RSM and ANFIS were compared based on the root mean square error, the mean absolute error, and the correlation coefficient based on the obtained data set. The results demonstrate that the developed ANFIS models are more effective than the RSM model. 展开更多
关键词 aluminum alloys response surface method(RSM) adaptive neuro-fuzzy inference system(ANFIS) friction stir welding Box-Behnken design neuro fuzzy
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部