A quarter-automobile active suspension model was proposed. High speed on/off solenoid valves were used as control valves and fuzzy control was chosen as control method . Based on force analyses of system parts, a math...A quarter-automobile active suspension model was proposed. High speed on/off solenoid valves were used as control valves and fuzzy control was chosen as control method . Based on force analyses of system parts, a mathematical model of the active suspension system was established and simplified by linearization method. Simulation study was conducted with Matlab and three scale coefficients of fuzzy controller (ke, kec, ku) were acquired. And an experimental device was designed and produced. The results indicate that the active suspension system can achieve better vibration isolation performance than passive suspension system, the displacement amplitude of automobile body can be reduced to 55%. Fuzzy control is an effective control method for active suspension system.展开更多
The objective of this work was to determine the location of emergency material warehouses. For the site selection problem of emergency material warehouses, the triangular fuzzy numbers are respectively demand of the d...The objective of this work was to determine the location of emergency material warehouses. For the site selection problem of emergency material warehouses, the triangular fuzzy numbers are respectively demand of the demand node, the distance between the warehouse and demand node and the cost of the warehouse, a bi-objective programming model was established with minimum total cost of the system and minimum distance between the selected emergency material warehouses and the demand node. Using the theories of fuzzy numbers, the fuzzy programming model was transformed into a determinate bi-objective mixed integer programming model and a heuristic algorithm for this model was designed. Then, the algorithm was proven to be feasible and effective through a numerical example. Analysis results show that the location of emergency material warehouse depends heavily on the values of degree a and weight wl. Accurate information of a certain emergency activity should be collected before making the decision.展开更多
文摘A quarter-automobile active suspension model was proposed. High speed on/off solenoid valves were used as control valves and fuzzy control was chosen as control method . Based on force analyses of system parts, a mathematical model of the active suspension system was established and simplified by linearization method. Simulation study was conducted with Matlab and three scale coefficients of fuzzy controller (ke, kec, ku) were acquired. And an experimental device was designed and produced. The results indicate that the active suspension system can achieve better vibration isolation performance than passive suspension system, the displacement amplitude of automobile body can be reduced to 55%. Fuzzy control is an effective control method for active suspension system.
基金Project(71071162)supported by the National Natural Science Foundation of China
文摘The objective of this work was to determine the location of emergency material warehouses. For the site selection problem of emergency material warehouses, the triangular fuzzy numbers are respectively demand of the demand node, the distance between the warehouse and demand node and the cost of the warehouse, a bi-objective programming model was established with minimum total cost of the system and minimum distance between the selected emergency material warehouses and the demand node. Using the theories of fuzzy numbers, the fuzzy programming model was transformed into a determinate bi-objective mixed integer programming model and a heuristic algorithm for this model was designed. Then, the algorithm was proven to be feasible and effective through a numerical example. Analysis results show that the location of emergency material warehouse depends heavily on the values of degree a and weight wl. Accurate information of a certain emergency activity should be collected before making the decision.