期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
模糊数据流的进化粒度神经网络分类算法 被引量:3
1
作者 刘志军 张杰 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2016年第3期474-480,共7页
模糊数据流的分类问题大多从模糊数据流中提取典型的特征来进行分类,没有考虑到概念漂移及非平衡问题。基于此,从模糊粒度神经元入手,构建了进化粒度神经网络的多层次拓扑结构。采用了模糊神经元的信息聚集规则,提出了进化粒度神经网络... 模糊数据流的分类问题大多从模糊数据流中提取典型的特征来进行分类,没有考虑到概念漂移及非平衡问题。基于此,从模糊粒度神经元入手,构建了进化粒度神经网络的多层次拓扑结构。采用了模糊神经元的信息聚集规则,提出了进化粒度神经网络的模糊编码方法与快速进化原理。运用梯形隶属函数对进化粒度神经元的聚集和模糊推理功能进行递归,通过关联函数和核函数来评估奇异逼近与粒度的近似结果,并以进化迭代和半监督分类方法解决了模糊数据流中的概念漂移及非平衡问题,从而实现了对模糊数据流的有效分类,仿真结果也证明了该方法的有效性。 展开更多
关键词 模糊数据流 进化粒度神经网络 粒计算 凸包 进化迭代
在线阅读 下载PDF
基于数据流模糊聚类挖掘的入侵检测系统研究
2
作者 李俊鹏 王勇 +1 位作者 白焱 李云杰 《现代防御技术》 北大核心 2013年第2期207-211,共5页
传统的基于数据挖掘入侵检测技术往往是基于静态数据的检测,随着网络速度的提高和网络流量的剧增,网络数据通常以数据流的形式出现。提出了一种作用于数据流的模糊聚类挖掘算法(SFCM),并且针对该算法提出了一种基于数据流模糊聚类的入... 传统的基于数据挖掘入侵检测技术往往是基于静态数据的检测,随着网络速度的提高和网络流量的剧增,网络数据通常以数据流的形式出现。提出了一种作用于数据流的模糊聚类挖掘算法(SFCM),并且针对该算法提出了一种基于数据流模糊聚类的入侵检测系统,实验结果显示,该方法有较高的检测率和较低的漏报率和误报率。 展开更多
关键词 数据流挖掘 聚类算法 基于数据流模糊聚类挖掘算法(SFCM) 入侵检测
在线阅读 下载PDF
THRFuzzy:Tangential holoentropy-enabled rough fuzzy classifier to classification of evolving data streams 被引量:1
3
作者 Jagannath E.Nalavade T.Senthil Murugan 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第8期1789-1800,共12页
The rapid developments in the fields of telecommunication, sensor data, financial applications, analyzing of data streams, and so on, increase the rate of data arrival, among which the data mining technique is conside... The rapid developments in the fields of telecommunication, sensor data, financial applications, analyzing of data streams, and so on, increase the rate of data arrival, among which the data mining technique is considered a vital process. The data analysis process consists of different tasks, among which the data stream classification approaches face more challenges than the other commonly used techniques. Even though the classification is a continuous process, it requires a design that can adapt the classification model so as to adjust the concept change or the boundary change between the classes. Hence, we design a novel fuzzy classifier known as THRFuzzy to classify new incoming data streams. Rough set theory along with tangential holoentropy function helps in the designing the dynamic classification model. The classification approach uses kernel fuzzy c-means(FCM) clustering for the generation of the rules and tangential holoentropy function to update the membership function. The performance of the proposed THRFuzzy method is verified using three datasets, namely skin segmentation, localization, and breast cancer datasets, and the evaluated metrics, accuracy and time, comparing its performance with HRFuzzy and adaptive k-NN classifiers. The experimental results conclude that THRFuzzy classifier shows better classification results providing a maximum accuracy consuming a minimal time than the existing classifiers. 展开更多
关键词 data stream classification fuzzy rough set tangential holoentropy concept change
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部