针对最小二乘孪生支持向量机(least squares twin support vector machine,LSTSVM)对噪声或是异常数据敏感和忽略数据内在结构信息的问题,提出了一种直觉模糊的结构化最小二乘孪生支持向量机(intuition fuzzy and structural least squa...针对最小二乘孪生支持向量机(least squares twin support vector machine,LSTSVM)对噪声或是异常数据敏感和忽略数据内在结构信息的问题,提出了一种直觉模糊的结构化最小二乘孪生支持向量机(intuition fuzzy and structural least squares twin support vector machine,IF-SLSTSVM)。首先采用孤立森林对输入样本点进行预处理;然后通过直觉模糊数的概念,赋予输入样本点不同的权重以减少噪声或是异常数据对分类超平面产生的影响;最后采用K-Means算法,以协方差的形式获取输入样本点之间的结构信息。IFSLSTSVM在LS-TSVM的基础上,考虑了输入样本点在特征空间中的分布信息及输入样本点之间的关系,提高了模型的鲁棒性。实验采取UCI数据集,在0%、5%、10%以及20%的不同比例噪声环境对IF-SLSTSVM算法的有效性进行验证。结果显示相较于6种对比算法,IF-SLSTSVM算法有更好的鲁棒性。展开更多
针对最小二乘双参数间隔支持向量机(LSTPMSVM)对噪声敏感且在分类过程中易受异常值影响的问题,提出了一种鲁棒的模糊最小二乘双参数间隔支持向量机算法(RFLSTPMSVM).该算法利用松弛变量的2范数使得优化问题具有强凸性,再根据隶属度为每...针对最小二乘双参数间隔支持向量机(LSTPMSVM)对噪声敏感且在分类过程中易受异常值影响的问题,提出了一种鲁棒的模糊最小二乘双参数间隔支持向量机算法(RFLSTPMSVM).该算法利用松弛变量的2范数使得优化问题具有强凸性,再根据隶属度为每个样本分配相应的权重,有效降低异常值带来的影响.同时,在目标函数中引入K-近邻加权,考虑样本之间的局部信息,提高模型的分类准确率.此外,通过求解简单的线性方程组来优化该算法,而不是求解二次规划问题,使模型具有较快的计算速度.在UCI(university of California irvine)数据集上对该算法进行性能评估,并与TWSVM、LSTSVM、LSTPMSVM和ULSTPMSVM 4种算法进行比较.数值实验结果表明,该算法具有更好的泛化性能.展开更多
文摘针对最小二乘孪生支持向量机(least squares twin support vector machine,LSTSVM)对噪声或是异常数据敏感和忽略数据内在结构信息的问题,提出了一种直觉模糊的结构化最小二乘孪生支持向量机(intuition fuzzy and structural least squares twin support vector machine,IF-SLSTSVM)。首先采用孤立森林对输入样本点进行预处理;然后通过直觉模糊数的概念,赋予输入样本点不同的权重以减少噪声或是异常数据对分类超平面产生的影响;最后采用K-Means算法,以协方差的形式获取输入样本点之间的结构信息。IFSLSTSVM在LS-TSVM的基础上,考虑了输入样本点在特征空间中的分布信息及输入样本点之间的关系,提高了模型的鲁棒性。实验采取UCI数据集,在0%、5%、10%以及20%的不同比例噪声环境对IF-SLSTSVM算法的有效性进行验证。结果显示相较于6种对比算法,IF-SLSTSVM算法有更好的鲁棒性。
文摘针对最小二乘双参数间隔支持向量机(LSTPMSVM)对噪声敏感且在分类过程中易受异常值影响的问题,提出了一种鲁棒的模糊最小二乘双参数间隔支持向量机算法(RFLSTPMSVM).该算法利用松弛变量的2范数使得优化问题具有强凸性,再根据隶属度为每个样本分配相应的权重,有效降低异常值带来的影响.同时,在目标函数中引入K-近邻加权,考虑样本之间的局部信息,提高模型的分类准确率.此外,通过求解简单的线性方程组来优化该算法,而不是求解二次规划问题,使模型具有较快的计算速度.在UCI(university of California irvine)数据集上对该算法进行性能评估,并与TWSVM、LSTSVM、LSTPMSVM和ULSTPMSVM 4种算法进行比较.数值实验结果表明,该算法具有更好的泛化性能.
文摘提出一种新的轴承故障特征提取方法——层次模糊熵(Hierarchical Fuzzy Entropy,HFE)。层次模糊熵包括层次分析和模糊熵计算。与多尺度模糊熵相比,层次模糊熵既分析信号的低频分量又分析信号的高频分量,因而能提取更全面、准确的故障信息。改进支持向量机(Improved support vector machine based binary tree,ISVMBT)相比其他多分类器具有识别率更高的优势,因此提出了一种基于层次模糊熵和改进支持向量机的轴承故障诊断方法。首先将HFE作为故障特征提取工具,然后将所得的特征向量输入到改进支持向量机进行模式识别。通过轴承故障诊断的工程应用,表明该方法可以有效提取轴承故障特征,实现轴承不同故障类型和故障程度的准确识别。