The aim of this paper is to propose a threat assessment method based on intuitionistic fuzzy measurement reasoning with orientaion to deal with the shortcomings of the method proposed in [Ying-Jie Lei et al., Journal ...The aim of this paper is to propose a threat assessment method based on intuitionistic fuzzy measurement reasoning with orientaion to deal with the shortcomings of the method proposed in [Ying-Jie Lei et al., Journal of Electronics and Information Technology 29(9)(2007)2077-2081] and [Dong-Feng Chen et al., Procedia Engineering 29(5)(2012)3302-3306] the ignorance of the influence of the intuitionistic index's orientation on the membership functions in the reasoning, which caused partial information loss in reasoning process. Therefore, we present a 3D expression of intuitionistic fuzzy similarity measurement, make an analysis of the constraints for intuitionistic fuzzy similarity measurement, and redefine the intuitionistic fuzzy similarity measurement. Moreover, in view of the threat assessment problem, we give the system variables of attribute function and assessment index, set up the reasoning system based on intuitionistic fuzzy similarity measurement with orientation, and design the reasoning rules, reasoning algorithms and fuzzy-resolving algorithms. Finally, through the threat assessment, some typical examples are cited to verify the validity and superiority of the method.展开更多
The main purpose of current study is development of an intelligent model for estimation of shear wave velocity in limestone. Shear wave velocity is one of the most important rock dynamic parameters. Because rocks have...The main purpose of current study is development of an intelligent model for estimation of shear wave velocity in limestone. Shear wave velocity is one of the most important rock dynamic parameters. Because rocks have complicated structure, direct determination of this parameter takes time, spends expenditure and requires accuracy. On the other hand, there are no precise equations for indirect determination of it; most of them are empirical. By using data sets of several dams of Iran and neuro-genetic, adaptive neuro-fuzzy inference system (ANFIS), and gene expression programming (GEP) methods, models are rendered for prediction of shear wave velocity in limestone. Totally, 516 sets of data has been used for modeling. From these data sets, 413 ones have been utilized for building the intelligent model, and 103 have been used for their performance evaluation. Compressional wave velocity (Vp), density (7) and porosity (.n), were considered as input parameters. Respectively, the amount of R for neuro-genetic and ANFIS networks was 0.959 and 0.963. In addition, by using GEP, three equations are obtained; the best of them has 0.958R. ANFIS shows the best prediction results, whereas GEP indicates proper equations. Because these equations have accuracy, they could be used for prediction of shear wave velocity for limestone in the future.展开更多
It has been shown in recent economic and statistical studies that combining forecasts may produce more accurate forecasts than individual ones. However, the literature on combining forecasts has almost exclusively foc...It has been shown in recent economic and statistical studies that combining forecasts may produce more accurate forecasts than individual ones. However, the literature on combining forecasts has almost exclusively focused on linear combining forecasts. In this paper, a new nonlinear combination forecasting method based on fuzzy inference system is present to overcome the difficulties and drawbacks in linear combination modeling of non-stationary time series. Furthermore, the optimization algorithm based on a hierarchical structure of learning automata is used to identify the parameters of the fuzzy system. Experiment results related to numerical examples demonstrate that the new technique has excellent identification performances and forecasting accuracy superior to other existing linear combining forecasts.展开更多
基金supported by The Foundation of State Key Laboratory of Astronautic Dynamics of China under Grant No.2012ADL-DW0301The National Natural Science Foundation of China under Grant Nos.61272011,61179010 and 60773209+1 种基金The Natural Science Foundation of Shaanxi Province of China under Grant Nos.2013JQ8035 and 2006F18The Postdoctoral Science Foundation of China under Grant No.2013M542331
文摘The aim of this paper is to propose a threat assessment method based on intuitionistic fuzzy measurement reasoning with orientaion to deal with the shortcomings of the method proposed in [Ying-Jie Lei et al., Journal of Electronics and Information Technology 29(9)(2007)2077-2081] and [Dong-Feng Chen et al., Procedia Engineering 29(5)(2012)3302-3306] the ignorance of the influence of the intuitionistic index's orientation on the membership functions in the reasoning, which caused partial information loss in reasoning process. Therefore, we present a 3D expression of intuitionistic fuzzy similarity measurement, make an analysis of the constraints for intuitionistic fuzzy similarity measurement, and redefine the intuitionistic fuzzy similarity measurement. Moreover, in view of the threat assessment problem, we give the system variables of attribute function and assessment index, set up the reasoning system based on intuitionistic fuzzy similarity measurement with orientation, and design the reasoning rules, reasoning algorithms and fuzzy-resolving algorithms. Finally, through the threat assessment, some typical examples are cited to verify the validity and superiority of the method.
文摘The main purpose of current study is development of an intelligent model for estimation of shear wave velocity in limestone. Shear wave velocity is one of the most important rock dynamic parameters. Because rocks have complicated structure, direct determination of this parameter takes time, spends expenditure and requires accuracy. On the other hand, there are no precise equations for indirect determination of it; most of them are empirical. By using data sets of several dams of Iran and neuro-genetic, adaptive neuro-fuzzy inference system (ANFIS), and gene expression programming (GEP) methods, models are rendered for prediction of shear wave velocity in limestone. Totally, 516 sets of data has been used for modeling. From these data sets, 413 ones have been utilized for building the intelligent model, and 103 have been used for their performance evaluation. Compressional wave velocity (Vp), density (7) and porosity (.n), were considered as input parameters. Respectively, the amount of R for neuro-genetic and ANFIS networks was 0.959 and 0.963. In addition, by using GEP, three equations are obtained; the best of them has 0.958R. ANFIS shows the best prediction results, whereas GEP indicates proper equations. Because these equations have accuracy, they could be used for prediction of shear wave velocity for limestone in the future.
基金Funded by the Excellent Young Teachers of MOE (350) and Chongqing Education Committee Foundation
文摘It has been shown in recent economic and statistical studies that combining forecasts may produce more accurate forecasts than individual ones. However, the literature on combining forecasts has almost exclusively focused on linear combining forecasts. In this paper, a new nonlinear combination forecasting method based on fuzzy inference system is present to overcome the difficulties and drawbacks in linear combination modeling of non-stationary time series. Furthermore, the optimization algorithm based on a hierarchical structure of learning automata is used to identify the parameters of the fuzzy system. Experiment results related to numerical examples demonstrate that the new technique has excellent identification performances and forecasting accuracy superior to other existing linear combining forecasts.