Takagi-Sugeno(T-S) fuzzy model is difficult to be linearized because of membership functions included.So,novel T-S fuzzy state transformation and T-S fuzzy feedback are proposed for the linearization of T-S fuzzy syst...Takagi-Sugeno(T-S) fuzzy model is difficult to be linearized because of membership functions included.So,novel T-S fuzzy state transformation and T-S fuzzy feedback are proposed for the linearization of T-S fuzzy system.The novel T-S fuzzy state transformation is the fuzzy combination of local linear transformation which transforms local linear models in the T-S fuzzy model into the local linear controllable canonical models.The fuzzy combination of local linear controllable canonical model gives controllable canonical T-S fuzzy model and then nonlinear feedback is obtained easily.After the linearization of T-S fuzzy model,a robust H∞ controller with the robustness of sliding model control(SMC) is designed.As a result,controlled T-S fuzzy system shows the performance of H∞ control and the robustness of SMC.展开更多
Similarity measure design on non-overlapped data was carried out and compared with the case of overlapped data.Unconsistant feature of similarity on overlapped data to non-overlapped data was provided by example.By th...Similarity measure design on non-overlapped data was carried out and compared with the case of overlapped data.Unconsistant feature of similarity on overlapped data to non-overlapped data was provided by example.By the artificial data illustration,it was proved that the conventional similarity measure was not proper to calculate the similarity measure of the non-overlapped case.To overcome the unbalance problem,similarity measure on non-overlapped data was obtained by considering neighbor information.Hence,different approaches to design similarity measure were proposed and proved by consideration of neighbor information.With the example of artificial data,similarity measure calculation was carried out.Similarity measure extension to intuitionistic fuzzy sets(IFSs)containing uncertainty named hesitance was also followed.展开更多
基金Research financially supported by Changwon National University in 2009
文摘Takagi-Sugeno(T-S) fuzzy model is difficult to be linearized because of membership functions included.So,novel T-S fuzzy state transformation and T-S fuzzy feedback are proposed for the linearization of T-S fuzzy system.The novel T-S fuzzy state transformation is the fuzzy combination of local linear transformation which transforms local linear models in the T-S fuzzy model into the local linear controllable canonical models.The fuzzy combination of local linear controllable canonical model gives controllable canonical T-S fuzzy model and then nonlinear feedback is obtained easily.After the linearization of T-S fuzzy model,a robust H∞ controller with the robustness of sliding model control(SMC) is designed.As a result,controlled T-S fuzzy system shows the performance of H∞ control and the robustness of SMC.
文摘Similarity measure design on non-overlapped data was carried out and compared with the case of overlapped data.Unconsistant feature of similarity on overlapped data to non-overlapped data was provided by example.By the artificial data illustration,it was proved that the conventional similarity measure was not proper to calculate the similarity measure of the non-overlapped case.To overcome the unbalance problem,similarity measure on non-overlapped data was obtained by considering neighbor information.Hence,different approaches to design similarity measure were proposed and proved by consideration of neighbor information.With the example of artificial data,similarity measure calculation was carried out.Similarity measure extension to intuitionistic fuzzy sets(IFSs)containing uncertainty named hesitance was also followed.