期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
模糊性综合评价在铁路选线中的应用 被引量:11
1
作者 张夏临 冯涛 《铁道工程学报》 EI 北大核心 2011年第2期21-26,共6页
研究目的:本文作者在长期从事山区铁路地质选线的基础上,将模糊性综合评价引用到工作中,用于指导铁路选线工作。研究结论:本文通过对影响因子的识别、度量,采用模糊性综合评价法对方案进行决策,并将这一方法应用于工程实际中,对铁路选... 研究目的:本文作者在长期从事山区铁路地质选线的基础上,将模糊性综合评价引用到工作中,用于指导铁路选线工作。研究结论:本文通过对影响因子的识别、度量,采用模糊性综合评价法对方案进行决策,并将这一方法应用于工程实际中,对铁路选线具有较好的指导意义;从工程实例可以看出,相同评价因子随着阶段的深入,对影响因子的认识的逐步清晰与细化,其结果会有不同;本文仅对两方案比选做了初步尝试,该方法也适用于多方案比选。 展开更多
关键词 铁路选线 影响因子 层次分析法 模糊性综合评价
在线阅读 下载PDF
User preferences-aware recommendation for trustworthy cloud services based on fuzzy clustering 被引量:1
2
作者 马华 胡志刚 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第9期3495-3505,共11页
The cloud computing has been growing over the past few years, and service providers are creating an intense competitive world of business. This proliferation makes it hard for new users to select a proper service amon... The cloud computing has been growing over the past few years, and service providers are creating an intense competitive world of business. This proliferation makes it hard for new users to select a proper service among a large amount of service candidates. A novel user preferences-aware recommendation approach for trustworthy services is presented. For describing the requirements of new users in different application scenarios, user preferences are identified by usage preference, trust preference and cost preference. According to the similarity analysis of usage preference between consumers and new users, the candidates are selected, and these data about service trust provided by them are calculated as the fuzzy comprehensive evaluations. In accordance with the trust and cost preferences of new users, the dynamic fuzzy clusters are generated based on the fuzzy similarity computation. Then, the most suitable services can be selected to recommend to new users. The experiments show that this approach is effective and feasible, and can improve the quality of services recommendation meeting the requirements of new users in different scenario. 展开更多
关键词 trustworthy service service recommendation user preferences-aware fuzzy clustering
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部