期刊文献+
共找到998篇文章
< 1 2 50 >
每页显示 20 50 100
基于非局部信息和子空间的模糊C有序均值聚类的图像分割算法
1
作者 陈阳 黄成泉 +3 位作者 覃小素 彭家磊 雷欢 周丽华 《计算机辅助设计与图形学学报》 北大核心 2025年第3期506-518,共13页
针对模糊C有序均值聚类算法没有考虑图像空间信息,导致难以有效地分割含噪图像的问题,提出一种基于非局部信息和子空间的模糊C有序均值聚类(non-local information and subspace for fuzzy C-ordered means,SFCOM-NLS)算法.首先,利用图... 针对模糊C有序均值聚类算法没有考虑图像空间信息,导致难以有效地分割含噪图像的问题,提出一种基于非局部信息和子空间的模糊C有序均值聚类(non-local information and subspace for fuzzy C-ordered means,SFCOM-NLS)算法.首先,利用图像中给定的相似邻域结构的像素提取当前像素的非局部空间信息;其次,计算每个像素的典型性,并对其进行排序,在每次迭代中更新像素的典型性,提高像素聚类的准确性,解决在聚类过程中存在相似类导致的误分类问题;最后,引入子空间聚类概念,为图像不同维度分配适当的权重,提高彩色图像的分割性能.在含噪合成图像和公开数据集BSDS500,MSRA100和AID上实验结果表明,所提算法的模糊划分系数、模糊划分熵、分割精度和标准化互信息平均值分别达到了95.00%,6.66%,98.77%和95.54%,均优于对比的同类算法. 展开更多
关键词 局部空间信息 子空间 模糊c有序均值 噪声图像分割 鲁棒性
在线阅读 下载PDF
满足本地差分隐私的混合噪音感知的模糊C均值聚类算法 被引量:1
2
作者 张朋飞 程俊 +4 位作者 张治坤 方贤进 孙笠 王杰 姜茸 《电子与信息学报》 北大核心 2025年第3期739-757,共19页
在大数据和物联网应用中,本地差分隐私(LDP)技术用于保护聚类分析中的用户隐私,但现有方法要么在LDP下交互式地进行聚类,需要消耗大量隐私预算,要么没有同时考虑到聚类数据中蕴含的表示数据质量的高斯噪音以及为满足LDP保护的拉普拉斯噪... 在大数据和物联网应用中,本地差分隐私(LDP)技术用于保护聚类分析中的用户隐私,但现有方法要么在LDP下交互式地进行聚类,需要消耗大量隐私预算,要么没有同时考虑到聚类数据中蕴含的表示数据质量的高斯噪音以及为满足LDP保护的拉普拉斯噪音,致使聚类精度低下。同时,对于衡量用户提交数据和簇心之间的距离选择较为武断,没有充分利用到用户提交的噪音数据中蕴含的噪音模式。为此,该文创新性地提出一种满足LDP的混合噪音感知的模糊C均值聚类算法(mnFCM),该算法的主要思想是同时建模用户上传数据中蕴含的表示用户质量的高斯噪音以及为保护用户数据注入的拉普拉斯噪音,进而设计出混合噪音感知的距离替代传统的欧式距离,来衡量样本数据与簇心间的相似性。特别地,在mnFCM中,该文首先设计了混合噪音感知的距离计算方法,在此基础上给出算法新的目标函数,并基于拉格朗日乘子法设计了求解方法,最后理论上分析了求解算法的收敛性。该文进一步理论分析了mnFCM的隐私、效用和复杂度,分析结果表明所提算法严格满足LDP、相对于对比算法更接近非隐私下的簇心以及和非隐私算法具有接近的复杂度。在两个真实数据集上的实验结果表明,mnFCM在满足LDP下,聚类精度提高了10%~15%。 展开更多
关键词 分析 隐私保护 本地差分隐私 模糊c均值 拉普拉斯机制
在线阅读 下载PDF
改进C均值聚类算法识别船用网络异常信息研究
3
作者 赵晓华 赵树升 《舰船科学技术》 北大核心 2025年第11期165-169,共5页
针对船用网络中流量和异常模式随着时间、船舶运行状态等因素而动态变化的特点,为判断网络的异常信息,提出基于改进C均值聚类算法的船用网络异常信息识别方法。该方法结合船用网络传输特性,分析该网络的传输流量情况,结合分析结果通过... 针对船用网络中流量和异常模式随着时间、船舶运行状态等因素而动态变化的特点,为判断网络的异常信息,提出基于改进C均值聚类算法的船用网络异常信息识别方法。该方法结合船用网络传输特性,分析该网络的传输流量情况,结合分析结果通过功率密度谱函数提取船用网络流量信息特征包络值,将提取结果输入基于模态稳定函数的模糊C均值聚类算法中,识别船用网络异常信息。测试结果显示,依据流量数据的包络特征值能够较好的描述网络信息的变化情况,信息识别后的分离性结果均在0.94以上;能够结合稳定函数完成船用网络异常信息分类识别,并且能够依据该函数确定不同异常信息的类别。 展开更多
关键词 c均值 船用网络 异常信息识别 传输流量
在线阅读 下载PDF
基于空间信息的鲁棒模糊C均值聚类的苗族服饰图像分割算法 被引量:2
4
作者 覃小素 黄成泉 +3 位作者 彭家磊 陈阳 雷欢 周丽华 《毛纺科技》 CAS 北大核心 2024年第1期91-98,共8页
针对苗族服饰图像中破损污渍、折叠痕迹、色彩差异大和噪声破坏等现象所导致的传统模糊C均值聚类(Fuzzy C-means,FCM)算法分割质量不佳问题,提出了基于空间信息鲁棒FCM算法,用于苗族服饰图像分割。通过均值滤波和中值滤波处理空间邻域信... 针对苗族服饰图像中破损污渍、折叠痕迹、色彩差异大和噪声破坏等现象所导致的传统模糊C均值聚类(Fuzzy C-means,FCM)算法分割质量不佳问题,提出了基于空间信息鲁棒FCM算法,用于苗族服饰图像分割。通过均值滤波和中值滤波处理空间邻域信息,对应获得2种方法,并用一个加权参数调节模糊隶属度的稀疏性,旨在加强细节的提取和提高算法对噪声的鲁棒性。实验表明,对于被高斯噪声破坏的图像,基于均值滤波处理的改进算法,其划分系数提高约3.6%,划分熵降低约5.6%;对于被椒盐噪声破坏的图像,基于中值滤波处理的空间约束项的改进算法,划分系数提高约2.7%,划分熵降低约4.3%。该算法提高了对这类苗族服饰图像分割的质量,对于传统文化的传承具有非凡的意义。 展开更多
关键词 苗族服饰图像 模糊c均值 均值滤波 中值滤波 模糊隶属度的稀疏性
在线阅读 下载PDF
基于自适应近邻信息的模糊C均值聚类算法 被引量:1
5
作者 高云龙 李建鹏 +3 位作者 郑兴莘 邵桂芳 祝青园 曹超 《光学精密工程》 EI CAS CSCD 北大核心 2024年第7期1045-1058,共14页
传统的模糊C均值算法直接基于原始数据进行聚类,数据的内在结构可能会被噪声、异常值或其他因素破坏,因此聚类性能会受到影响。为提升FCM算法的鲁棒性,提出了一种基于自适应近邻信息的模糊C均值聚类算法。近邻信息指的是一种基于数据点... 传统的模糊C均值算法直接基于原始数据进行聚类,数据的内在结构可能会被噪声、异常值或其他因素破坏,因此聚类性能会受到影响。为提升FCM算法的鲁棒性,提出了一种基于自适应近邻信息的模糊C均值聚类算法。近邻信息指的是一种基于数据点之间相似度的度量,每个数据点都可以看作其他数据点的近邻,但是不同数据点之间的相似度是不同的。将样本点的近邻信息GX和类中心点的近邻信息GV融入基础FCM模型中,为聚类过程提供更多的数据结构信息,用于指导聚类算法中的簇划分过程,以提升算法的稳定性,并提出了3个迭代算法求解本文提出的聚类模型。与其他先进聚类算法对比,在部分基准数据集上聚类性能有10%以上的提升,同时还从参数敏感性、收敛性、消融实验等方面对算法进行评价。实验结果可以充分显示本文提出的聚类算法的可行性与有效性。 展开更多
关键词 模糊c均值 自适应近邻 算法鲁棒性 迭代算法
在线阅读 下载PDF
基于ELM的局部空间信息的模糊C均值聚类图像分割算法 被引量:6
6
作者 陈凯 陈秀宏 《数据采集与处理》 CSCD 北大核心 2019年第1期100-110,共11页
极限学习机(Extreme learning machine,ELM)作为一种新技术具有在回归和分类中良好的泛化性能。局部空间信息的模糊C均值算法(Weighted fuzzy local information C-means,WFLICM)用邻域像素点的空间信息标记中心点的影响因子,增强了模糊... 极限学习机(Extreme learning machine,ELM)作为一种新技术具有在回归和分类中良好的泛化性能。局部空间信息的模糊C均值算法(Weighted fuzzy local information C-means,WFLICM)用邻域像素点的空间信息标记中心点的影响因子,增强了模糊C均值聚类算法的去噪声能力。基于极限学习机理论,对WFLICM进行改进优化,提出了基于ELM的局部空间信息的模糊C均值聚类图像分割算法(New kernel weighted fuzzy local information C-means based on ELM,ELM-NKWFLICM)。该方法基于ELM特征映射技术,将原始数据通过ELM特征映射技术映射到高维ELM隐空间中,再用改进的新核局部空间信息的模糊C均值聚类图像分割算法(New kernel weighted fuzzy local information Cmeans,NKWFLICM)进行聚类。实验结果表明ELM-NKWFLICM算法具有比WFLICM算法更强的去噪声能力,且很好地保留了原图像的细节,算法在处理复杂非线性数据时更高效,同时克服了模糊聚类算法对模糊指数的敏感性问题。 展开更多
关键词 算法 图像分割 模糊c均值算法 极限学习机
在线阅读 下载PDF
基于改进模糊C均值聚类与SMO算法的地铁轨道健康状态评价
7
作者 许以凯 杨艺 +2 位作者 张明凯 赵才友 万壮 《铁道标准设计》 北大核心 2024年第11期53-59,共7页
轨道健康状态评价技术对于保障列车的运行安全与乘客的舒适性有重要意义,为寻求一种新的轨道设备综合评价方法,实现对轨道健康状态的科学评价,提出一种基于改进模糊C均值聚类和序列最小优化算法(SMO)构建轨道健康状态评估分析模型。该... 轨道健康状态评价技术对于保障列车的运行安全与乘客的舒适性有重要意义,为寻求一种新的轨道设备综合评价方法,实现对轨道健康状态的科学评价,提出一种基于改进模糊C均值聚类和序列最小优化算法(SMO)构建轨道健康状态评估分析模型。该模型首先提出包含轨道几何状态和结构状态的综合评价指标体系;其次采用变异系数法计算评价指标的权重系数并代入模糊C均值聚类法,得到各轨道样本的分类结果;在此基础上,再利用序列最小优化算法通过划分数据对轨道健康状态进行评价;最后通过实例分析对该评价模型进行验证并开展研究。研究结果表明,经模型评价的855个轨道单元评价结果中优良比例为94%,预测效果良好,平均误差为5%,进而验证了该模型的指标体系和评价方法的科学性和合理性,并给出了进一步研究优化的方向。本文对各轨道指标统筹综合评价,为地铁轨道工务管理线路质量评价提供一种新思路,使轨道设备管理变得有序可控,减少人力、物力资源的浪费。 展开更多
关键词 地铁 轨道 健康状态评价 变异系数法 模糊c均值 SMO算法
在线阅读 下载PDF
基于空间信息的可能性模糊C均值聚类遥感图像分割 被引量:12
8
作者 张一行 王霞 +2 位作者 方世明 李晓冬 凌峰 《计算机应用》 CSCD 北大核心 2011年第11期3004-3007,共4页
可能性模糊C均值(PFCM)聚类算法作为模糊C均值(FCM)聚类算法的一种改进算法,能在一定程度上克服FCM算法对噪声的敏感性;但由于PFCM没有考虑像元间的空间信息,对含有较大噪声的图像分割效果依然不理想。为此,提出一种新的基于空间信息的P... 可能性模糊C均值(PFCM)聚类算法作为模糊C均值(FCM)聚类算法的一种改进算法,能在一定程度上克服FCM算法对噪声的敏感性;但由于PFCM没有考虑像元间的空间信息,对含有较大噪声的图像分割效果依然不理想。为此,提出一种新的基于空间信息的PFCM算法(SPFCM),克服了PFCM算法对含有较大噪声的图像分割效果不佳的缺点。通过对人工图像和IKONOS遥感图像进行分析,结果表明,SPFCM算法无论是在视觉上还是在分割正确率上都优于传统的FCM算法、PFCM算法及两种加入空间信息的FCM算法;对于含有高斯噪声和盐椒噪声的图像,平均分割正确率高达99.71%,是一种去噪效果较好的图像分割算法。 展开更多
关键词 空间信息 模糊c均值 可能性c均值 图像分割
在线阅读 下载PDF
基于广域状态信息和模糊C均值聚类的电网故障区域判别 被引量:13
9
作者 吴浩 李群湛 易东 《电力自动化设备》 EI CSCD 北大核心 2013年第7期39-45,共7页
结合电网广域状态信息,提出一种基于模糊C均值(FCM)聚类的电网故障区域判别新方法。该方法利用线路智能电子装置(IED)采集相应保护的动作信息、方向元件状态信息、断路器状态信息等,并以电网各线路IED状态信息作为FCM的聚类对象。给出... 结合电网广域状态信息,提出一种基于模糊C均值(FCM)聚类的电网故障区域判别新方法。该方法利用线路智能电子装置(IED)采集相应保护的动作信息、方向元件状态信息、断路器状态信息等,并以电网各线路IED状态信息作为FCM的聚类对象。给出电网关联IED的定义,利用故障判别算法把故障元件关联IED归为一类,同方向区外故障IED归为一类。大量仿真表明,该方法容错性能好,运行速度快,判别准确率高,即使部分信息不准确,也能正确判断故障区域。 展开更多
关键词 电力系统 广域状态信息 模糊c均值 线路IED 故障区域判别 故障分析
在线阅读 下载PDF
基于分布信息直觉模糊c均值聚类的红外图像分割算法 被引量:28
10
作者 王晓飞 胡凡奎 黄硕 《通信学报》 EI CSCD 北大核心 2020年第5期120-129,共10页
针对传统的直觉模糊c均值聚类算法进行图像分割时对聚类中心敏感导致最终聚类精度低、细节保留性差、时间复杂度较大等不足,提出了一种适用于电力设备红外图像分割的基于分布信息的直觉模糊c均值聚类算法。红外图像中高强度的非目标对... 针对传统的直觉模糊c均值聚类算法进行图像分割时对聚类中心敏感导致最终聚类精度低、细节保留性差、时间复杂度较大等不足,提出了一种适用于电力设备红外图像分割的基于分布信息的直觉模糊c均值聚类算法。红外图像中高强度的非目标对象与图像强度不均匀对图像分割有较强干扰,所提算法能有效抑制该干扰。首先,将高斯模型引入电力设备的全局空间分布信息中以改进IFCM算法;其次,利用局部空间信息的空间算子优化隶属函数来解决边缘模糊和图像强度不均匀问题。经过对Terravic动态红外数据库与包含300幅电力设备红外图像的数据集进行实验,相对区域错误率在10%左右,受模糊因子m变化影响较小,验证了所提算法在有效性与适用性上明显优于其他对比算法。 展开更多
关键词 直觉模糊c均值 红外图像 高斯模型 局部信息
在线阅读 下载PDF
融合多尺度统计信息模糊C均值聚类与Markov随机场的小波域声纳图像分割 被引量:5
11
作者 夏平 任强 +1 位作者 吴涛 雷帮军 《兵工学报》 EI CAS CSCD 北大核心 2017年第5期940-948,共9页
声纳图像成像质量差、特征信息弱,目标分割存在一定困难,为此提出一种融合多尺度统计信息的模糊C均值(FCM)聚类与Markov随机场(MRF)的小波域声纳图像分割算法。小波域中低频信息统计特性描述了低频不同区域像素聚类情况,高频信息反映了... 声纳图像成像质量差、特征信息弱,目标分割存在一定困难,为此提出一种融合多尺度统计信息的模糊C均值(FCM)聚类与Markov随机场(MRF)的小波域声纳图像分割算法。小波域中低频信息统计特性描述了低频不同区域像素聚类情况,高频信息反映了该方向纹理特征,依据低频子带的统计峰值选取FCM初始聚类中心,应用小波域FCM聚类算法对声纳图像进行预分割,抑制噪声的影响,提高了预分割的准确性;构建初分割后图像的多尺度MRF模型,尺度间节点标记的相关性采用1阶Markov性表征,尺度内构建2阶邻域系统描述系数间的标记联系,标记场采用双点多级逻辑模型建模,同一标记的系数特征场采用高斯模型建模,弥补了MRF算法中层次信息和轮廓信息描述的不足;应用迭代条件模型算法求其最小能量下的标记场,实现声纳图像分割。从视觉主观效果和客观评价指标两方面的实验结果验证表明,该算法分割声纳图像均优于FCM聚类算法和MRF算法,分割的声纳图像边缘与细节的清晰度、精细度均有一定程度改善。 展开更多
关键词 信息处理技术 声纳图像分割 模糊c均值 MARKOV随机场 小波域 迭代条件模型算法
在线阅读 下载PDF
基于耦合空间模糊C均值聚类和推土机距离的变化检测 被引量:1
12
作者 谢江陵 李轶鲲 +2 位作者 李小军 杨树文 魏易从 《遥感信息》 CSCD 北大核心 2024年第3期144-152,共9页
在遥感影像变化检测领域中,当遥感影像受椒盐、高斯和混合噪声污染时,变化检测精度往往无法得到保证。虽然基于空间模糊C均值聚类的有监督变化检测算法能有效实现抗噪声变化检测,但是其人工训练成本和时间成本过高,在实时场景中无法大... 在遥感影像变化检测领域中,当遥感影像受椒盐、高斯和混合噪声污染时,变化检测精度往往无法得到保证。虽然基于空间模糊C均值聚类的有监督变化检测算法能有效实现抗噪声变化检测,但是其人工训练成本和时间成本过高,在实时场景中无法大规模应用。对此,文章将5种空间模糊C均值算法分别与推土机距离(earth mover’s distance, EMD)耦合,实现了5种具有较好抗噪声能力的无监督遥感变化检测算法,能够保证噪声污染下的实时变化检测精度。实验证明,与最近提出的KPCAMNet和GMCD无监督变化检测算法相比,所提出算法能更好地处理受椒盐、高斯和混合噪声污染的遥感影像,具有一定的应用价值。 展开更多
关键词 无监督 抗噪声 变化检测 空间模糊c均值 推土机距离
在线阅读 下载PDF
基于模糊C均值聚类的空—地—井垂直重力梯度数据反演方法 被引量:1
13
作者 张显 侯振隆 +3 位作者 赵福权 秦朋波 赵信阳 王家辉 《石油地球物理勘探》 EI CSCD 北大核心 2024年第3期629-639,共11页
通过重力梯度数据三维反演能够获得地下密度结构模型,用于地质资源勘探等领域。航空、地面和井中观测的重力梯度数据含有不同频率的信息,通过数据联合可以降低反演多解性,提高成像分辨率。对于具有复杂形态的地下异常体,目前这种多尺度... 通过重力梯度数据三维反演能够获得地下密度结构模型,用于地质资源勘探等领域。航空、地面和井中观测的重力梯度数据含有不同频率的信息,通过数据联合可以降低反演多解性,提高成像分辨率。对于具有复杂形态的地下异常体,目前这种多尺度数据联合反演的纵向空间分辨率,尤其是异常体底部的成像分辨率有待提升。针对该问题,开展了航空—地面—井中垂直重力梯度数据的联合反演方法研究。首先,在正则化反演中引入模糊C均值聚类算法,通过在迭代过程中加入聚类约束降低多解性;其次,联合航空、地面和井中垂直重力梯度数据,提出一种联合反演方法,并使用GPU加速计算;然后,将反演应用于理论模型数据与美国文顿盐丘地区重力梯度数据,验证方法的效果,并讨论了井位置对结果的影响;最后,对基于GPU加速的并行反演方法进行性能分析。数据试验证明了模糊C均值聚类算法能够降低反演的多解性,通过联合反演能够获得准确的密度分布,该方法具有一定的抗噪能力;使用异常旁井和穿异常井数据的成像分辨率更高。计算的文顿盐丘地区密度分布与其他学者的结论相近,证明了方法是有效且可行的。试验还表明,GPU并行方法具有较高的加速比,提出的方法能够为地质找矿等研究提供技术支撑。 展开更多
关键词 空—地—井垂直重力梯度 密度反演 模糊c均值 文顿盐丘 GPU加速
在线阅读 下载PDF
利用空间信息的核模糊C均值聚类算法 被引量:3
14
作者 王丹丹 李彬 陈武凡 《计算机工程与应用》 CSCD 北大核心 2007年第33期82-83,111,共3页
模糊聚类,特别是模糊C均值聚类算法(FCM)广泛地运用到图像的分割中。但是传统的算法未对数据对特征进行优化,亦未考虑图像的空间信息,对噪声图像分割不理想。在FCM目标函数中引入核函数,用内核引导距离代替传统的欧式距离,同时考虑到邻... 模糊聚类,特别是模糊C均值聚类算法(FCM)广泛地运用到图像的分割中。但是传统的算法未对数据对特征进行优化,亦未考虑图像的空间信息,对噪声图像分割不理想。在FCM目标函数中引入核函数,用内核引导距离代替传统的欧式距离,同时考虑到邻近象素的影响,增加了空间约束项,提出了利用空间信息的核FCM算法。通过对模拟图和仿真脑部MR图像的分割实验证明,该算法可以有效的分割含有噪声图像。 展开更多
关键词 图像分割 核方法 模糊c均值算法 图像的空间信息
在线阅读 下载PDF
基于自适应局部迭代滤波和模糊C均值聚类的滚动轴承故障诊断方法 被引量:8
15
作者 张超 何闯进 何玉灵 《轴承》 北大核心 2021年第5期50-55,62,共7页
为准确提取滚动轴承振动信号的故障特征,并对不同状态信号进行划分,提出了一种基于自适应局部迭代滤波(ALIF)和模糊C均值(KFCM)聚类的滚动轴承故障诊断方法。首先,将多模态信号自适应分解为多阶单一模态分量;然后,结合相关系数提取出含... 为准确提取滚动轴承振动信号的故障特征,并对不同状态信号进行划分,提出了一种基于自适应局部迭代滤波(ALIF)和模糊C均值(KFCM)聚类的滚动轴承故障诊断方法。首先,将多模态信号自适应分解为多阶单一模态分量;然后,结合相关系数提取出含有最多故障特征信息的最优分量,计算其近似熵值并构建特征向量矩阵;最后,将得到的特征向量输入KFCM得到聚类结果。试验结果表明,与基于EMD,EEMD和KFCM聚类,以及ALIF和FCM聚类的方法相比,ALIF和KFCM方法的分类系数更接近1,平均模糊熵更接近0,聚类效果更好,对滚动轴承各类故障信号具有很高的识别度和良好的分类效果。 展开更多
关键词 滚动轴承 故障诊断 自适应局部迭代滤波 模糊c均值 近似熵
在线阅读 下载PDF
基于模糊C均值聚类与空间信息相结合的图像分割新算法 被引量:4
16
作者 蔡燕柳 贾振红 《激光杂志》 CAS CSCD 北大核心 2009年第2期49-50,52,共3页
针对传统的模糊C均值聚类(FCM)图像分割方法未考虑图像的空间信息,对噪声十分敏感的问题,本文提出了一种结合空间信息的模糊C均值聚类分割新算法;该算法将图像的二维直方图引入传统的模糊C均值聚类算法中,并对隶属函数做了改进;依据平... 针对传统的模糊C均值聚类(FCM)图像分割方法未考虑图像的空间信息,对噪声十分敏感的问题,本文提出了一种结合空间信息的模糊C均值聚类分割新算法;该算法将图像的二维直方图引入传统的模糊C均值聚类算法中,并对隶属函数做了改进;依据平方误差和最小准则,来确定模糊分类矩阵及聚类中心;最后,依据最大隶属度原则,划分图像像素的类别归属,以改善传统的PCM算法的分割质量。实验结果表明,该算法显示了较好的分割效果和较强的抗噪性能。 展开更多
关键词 模糊c均值 图像分割 空间信息
在线阅读 下载PDF
改进模糊聚类语义分割声环境功能区划图
17
作者 曾宇 姚琨 秦勤 《噪声与振动控制》 北大核心 2025年第2期210-215,共6页
声环境功能区划多采用地理信息系统进行研究,但公开发布的声环境功能区划方案中的文字和图片无法直接用于地理信息系统分析。首先提出改进模糊C均值聚类超像素方法,对声环境功能区划图进行语义分割以获取声功能区信息。接着采用简单线... 声环境功能区划多采用地理信息系统进行研究,但公开发布的声环境功能区划方案中的文字和图片无法直接用于地理信息系统分析。首先提出改进模糊C均值聚类超像素方法,对声环境功能区划图进行语义分割以获取声功能区信息。接着采用简单线性迭代聚类构建超像素,提取声环境功能区划图特征矩阵,基于K-means++改进模糊C均值聚类算法,语义分割超像素粒化的声环境功能区划图,并以声功能区面积占比计算结果偏差为评价指标,分析超像素尺度对分割结果的影响。然后基于不同图像特征矩阵构建方法和聚类中心初始化方法,使用模糊C均值聚类、高斯混合模型聚类、K-medoids聚类语义分割声环境功能区划图,最后比较不同组合方案的声功能区面积占比计算结果偏差,验证方法的有效性。 展开更多
关键词 声学 声环境功能区划图 彩色图像分割 模糊c均值 简单线性迭代 K-means++算法
在线阅读 下载PDF
互信息与模糊C均值聚类集成的特征优选方法 被引量:2
18
作者 朱接文 肖军 《计算机应用》 CSCD 北大核心 2014年第9期2608-2611,2649,共5页
针对大型数据中大量冗余特征的存在可能降低数据分类性能的问题,提出了一种基于互信息(MI)与模糊C均值(FCM)聚类集成的特征自动优选方法 FCC-MI。首先分析了互信息特征及其相关度函数,根据相关度对特征进行排序;然后按照最大相关度对应... 针对大型数据中大量冗余特征的存在可能降低数据分类性能的问题,提出了一种基于互信息(MI)与模糊C均值(FCM)聚类集成的特征自动优选方法 FCC-MI。首先分析了互信息特征及其相关度函数,根据相关度对特征进行排序;然后按照最大相关度对应的特征对数据进行分组,采用FCM聚类方法自动确定最优特征数目;最后基于相关度对特征进行了优选。在UCI机器学习数据库的7个数据集上进行实验,并与相关文献中提出的基于类内方差与相关度结合的特征选择方法(WCMFS)、基于近似Markov blanket和动态互信息的特征选择算法(B-AMBDMI)及基于互信息和遗传算法的两阶段特征选择方法(T-MI-GA)进行对比。理论分析和实验结果表明,FCC-MI不但提高了数据分类的效率,而且在有效保证分类精度的同时能自动确定最优特征子集,减少了数据集的特征数目,适用于海量、数据特征相关性大的特征约简及数据分析。 展开更多
关键词 信息 特征优选 模糊c均值 数据分组
在线阅读 下载PDF
引导模糊C均值聚类算法在联合反演综合解释中的应用
19
作者 陈易周 刘江 +2 位作者 涂齐催 李炳颖 娄敏 《石油地球物理勘探》 EI CSCD 北大核心 2024年第4期865-874,共10页
不同地球物理方法的反演结果常常存在差异,根据不同方法的联合反演结果得到最终合理解释是了解地下结构的关键。为此,提出了一种引导式模糊C均值(FCM)聚类算法,即在FCM聚类算法的基础上,结合现有地质认识,引入先验约束信息指导聚类中心... 不同地球物理方法的反演结果常常存在差异,根据不同方法的联合反演结果得到最终合理解释是了解地下结构的关键。为此,提出了一种引导式模糊C均值(FCM)聚类算法,即在FCM聚类算法的基础上,结合现有地质认识,引入先验约束信息指导聚类中心的确定,对地球物理联合反演结果进行综合定量解释,旨在降低传统人工解释的主观性和局限性。模型测试表明,与传统FCM聚类技术相比,引导FCM聚类技术效果更好,特别是处理复杂地质结构的反演数据时,能够有效地区分不同地质体。实际数据的应用结果证明了引导FCM聚类技术在多属性地球物理联合反演结果综合解释中的应用潜力较大。该技术不仅提升了地球物理数据解释的科学性,而且为地下资源勘探提供了一个更可靠和精确的工具。 展开更多
关键词 模糊c均值 联合反演 综合解释 先验约束信息 多属性
在线阅读 下载PDF
基于快速鲁棒模糊C有序均值聚类的苗族服饰图像分割算法
20
作者 陈阳 黄成泉 +3 位作者 雷欢 彭家磊 覃小素 周丽华 《毛纺科技》 CAS 北大核心 2024年第8期81-89,共9页
苗族服饰图像具有绣线纹理复杂、色彩形状多样等特征,针对模糊C有序均值(Fuzzy C-Ordered-Means,FCOM)聚类算法在进行苗族服饰图像分割时,存在耗时长、分割效果不理想的问题,提出了一种快速鲁棒模糊C有序均值聚类算法。在FCOM算法基础... 苗族服饰图像具有绣线纹理复杂、色彩形状多样等特征,针对模糊C有序均值(Fuzzy C-Ordered-Means,FCOM)聚类算法在进行苗族服饰图像分割时,存在耗时长、分割效果不理想的问题,提出了一种快速鲁棒模糊C有序均值聚类算法。在FCOM算法基础上加入了竞争学习的思想,通过构造新的隶属度约束函数,对像素点进行更加强制清晰的划分,提高图像像素定位的准确性,从而加快算法的收敛速度。结果表明,本文算法在图像分割过程中能有效地降低异常值的影响,获得更加准确的分割结果。该算法在Jaccard相似系数、分割精度、Dice相似系数、模糊划分系数及模糊划分熵等性能方面均优于其他几种模糊C均值(Fuzzy C-Means,FCM)算法,且分割时间与迭代次数也优于FCOM算法。 展开更多
关键词 苗族图像分割 算法 模糊c有序均值 竞争学习 鲁棒性
在线阅读 下载PDF
上一页 1 2 50 下一页 到第
使用帮助 返回顶部