在区间值毕达哥拉斯模糊环境下的多属性决策中,针对决策过程一般未考虑决策人偏好习惯和风险规避的问题,同时为解决现有得分函数忽略区间犹豫度对决策影响的情况,提出了基于改进得分函数和前景理论的区间值毕达哥拉斯模糊多属性决策方...在区间值毕达哥拉斯模糊环境下的多属性决策中,针对决策过程一般未考虑决策人偏好习惯和风险规避的问题,同时为解决现有得分函数忽略区间犹豫度对决策影响的情况,提出了基于改进得分函数和前景理论的区间值毕达哥拉斯模糊多属性决策方法。首先,对区间值毕达哥拉斯模糊集(interval-valued Pythagorean fuzzy set, IVPFS)现有得分函数深入分析,定义一种改进后的新得分函数,并证明其相关定理和性质。其次,将新得分函数应用于区间值毕达哥拉斯模糊多属性决策问题中,得出各备选方案在各属性下的新得分函数,基于熵权逼近理想解排序法(technique for order preference by similarity to ideal soution, TOPSIS)确定正、负理想方案的得分函数集。然后,引入前景理论利用前景价值函数对决策人由于损益表现出的主观感受进行描述,得出备选方案的综合损益值,结合各属性权重融合不同方案的综合损益比,通过对比综合损益比大小得出最优方案。最后,利用算例验证了该改进方法的正确性和有效性,展示了与原得分函数的对比分析结果,为多属性决策问题提供了新的技术途径。展开更多
在研究多属性群决策问题的领域中,概率犹豫模糊术语集(hesitant probabilistic fuzzy set,HPFS)作为犹豫模糊集的一种扩展,正广受关注。针对目前在概率犹豫模糊语言环境下,考虑用主客观结合的方式来求解权重以及对方案排序的过程中存在...在研究多属性群决策问题的领域中,概率犹豫模糊术语集(hesitant probabilistic fuzzy set,HPFS)作为犹豫模糊集的一种扩展,正广受关注。针对目前在概率犹豫模糊语言环境下,考虑用主客观结合的方式来求解权重以及对方案排序的过程中存在的问题,提出了一种基于前景理论和逼近理想解排序法(technique for order preference by similarity to an ideal solution,TOPSIS)相结合的多属性群决策模型。首先根据已知的主观决策者权重,经过一致性调节运算得到决策者的综合权重;其次利用熵值法构建了属性权重的求解模型;在充分考虑决策者心理行为的前提下,求解出正、负理想解矩阵,并且基于TOPSIS方法实现多个备选方案之间的优劣排序;最后,通过实例验证了该模型的可行性和有效性。展开更多
文摘在区间值毕达哥拉斯模糊环境下的多属性决策中,针对决策过程一般未考虑决策人偏好习惯和风险规避的问题,同时为解决现有得分函数忽略区间犹豫度对决策影响的情况,提出了基于改进得分函数和前景理论的区间值毕达哥拉斯模糊多属性决策方法。首先,对区间值毕达哥拉斯模糊集(interval-valued Pythagorean fuzzy set, IVPFS)现有得分函数深入分析,定义一种改进后的新得分函数,并证明其相关定理和性质。其次,将新得分函数应用于区间值毕达哥拉斯模糊多属性决策问题中,得出各备选方案在各属性下的新得分函数,基于熵权逼近理想解排序法(technique for order preference by similarity to ideal soution, TOPSIS)确定正、负理想方案的得分函数集。然后,引入前景理论利用前景价值函数对决策人由于损益表现出的主观感受进行描述,得出备选方案的综合损益值,结合各属性权重融合不同方案的综合损益比,通过对比综合损益比大小得出最优方案。最后,利用算例验证了该改进方法的正确性和有效性,展示了与原得分函数的对比分析结果,为多属性决策问题提供了新的技术途径。
文摘在研究多属性群决策问题的领域中,概率犹豫模糊术语集(hesitant probabilistic fuzzy set,HPFS)作为犹豫模糊集的一种扩展,正广受关注。针对目前在概率犹豫模糊语言环境下,考虑用主客观结合的方式来求解权重以及对方案排序的过程中存在的问题,提出了一种基于前景理论和逼近理想解排序法(technique for order preference by similarity to an ideal solution,TOPSIS)相结合的多属性群决策模型。首先根据已知的主观决策者权重,经过一致性调节运算得到决策者的综合权重;其次利用熵值法构建了属性权重的求解模型;在充分考虑决策者心理行为的前提下,求解出正、负理想解矩阵,并且基于TOPSIS方法实现多个备选方案之间的优劣排序;最后,通过实例验证了该模型的可行性和有效性。