In this work, the highly ordered tungsten trioxide nanotube arrays have been synthesized by the combination of Sol-Gel chemical method and anodic aluminum oxide (AAO) templating method. The morphology and the chemical...In this work, the highly ordered tungsten trioxide nanotube arrays have been synthesized by the combination of Sol-Gel chemical method and anodic aluminum oxide (AAO) templating method. The morphology and the chemical composition of tungsten trioxide nanotubes arrays were characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS) and X-ray diffraction (XRD). The results show that the wall thickness of the tungsten trioxide nanotubes arrays can be controlled by the immersion time. The growth mechanism of naotubes arrays is also discussed.展开更多
The template method for preparing nanostructures entails the synthesis of the desired material within the pores of a nanoporous membrane. In this work, TiO2 nanotubules of the anatase form have been synthesized by sol...The template method for preparing nanostructures entails the synthesis of the desired material within the pores of a nanoporous membrane. In this work, TiO2 nanotubules of the anatase form have been synthesized by sol-gel chemical method using porous anodic alumina as the template. Transmission electron microscopy(TEM), scanning electron microscopy(SEM), infrared spectroscopy(IR) and X-ray diffraction were used to investigate the structure and morphology of the TiO2 nanotubules. The results showed that the diameter and length of the obtained nanotubules were determined by the pore size and length of the PAA template. It was founded that through control of immersion time, both tubules and fibrils can be prepared; in addition, the wall thickness of the nanotubules can be varied at will. The result indicated that the sol particles absorbed preferably to the pore walls of the PAA membrane due to the fact that the pore walls were negatively charged and the TiO2 particles were positively charged.展开更多
文摘In this work, the highly ordered tungsten trioxide nanotube arrays have been synthesized by the combination of Sol-Gel chemical method and anodic aluminum oxide (AAO) templating method. The morphology and the chemical composition of tungsten trioxide nanotubes arrays were characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS) and X-ray diffraction (XRD). The results show that the wall thickness of the tungsten trioxide nanotubes arrays can be controlled by the immersion time. The growth mechanism of naotubes arrays is also discussed.
文摘The template method for preparing nanostructures entails the synthesis of the desired material within the pores of a nanoporous membrane. In this work, TiO2 nanotubules of the anatase form have been synthesized by sol-gel chemical method using porous anodic alumina as the template. Transmission electron microscopy(TEM), scanning electron microscopy(SEM), infrared spectroscopy(IR) and X-ray diffraction were used to investigate the structure and morphology of the TiO2 nanotubules. The results showed that the diameter and length of the obtained nanotubules were determined by the pore size and length of the PAA template. It was founded that through control of immersion time, both tubules and fibrils can be prepared; in addition, the wall thickness of the nanotubules can be varied at will. The result indicated that the sol particles absorbed preferably to the pore walls of the PAA membrane due to the fact that the pore walls were negatively charged and the TiO2 particles were positively charged.