伴随着宽带雷达系统的发展,信号带宽越来越大,从而对模数转换器(ADC)的转换速度要求也越来越高。为满足宽带系统需求,需要ADC能够在数百兆甚至上GHz转换速度下实现较高精度的数据转换,这对ADC芯片设计提出了很高的要求。基于0.18μm Bi ...伴随着宽带雷达系统的发展,信号带宽越来越大,从而对模数转换器(ADC)的转换速度要求也越来越高。为满足宽带系统需求,需要ADC能够在数百兆甚至上GHz转换速度下实现较高精度的数据转换,这对ADC芯片设计提出了很高的要求。基于0.18μm Bi CMOS工艺,设计了一种时间交织流水线架构的超高速ADC,前端采用一个超高速高精度跟踪保持器,转换核心采用四路并行流水线时域交织工作,内部集成多相位时钟控制电路。实测结果表明:该ADC芯片在800 MS/s速度下性能良好,部分通道最高工作速度可达1.2 GS/s。展开更多
基金Supported by the National Key Research and Development Program of China(2021YFA0715503)the Open Foundation of Key Laboratory of Infrared Imaging Materials and Detectors Shanghai Institute of Technical PhysicsChinese Academy of Sciences。
文摘伴随着宽带雷达系统的发展,信号带宽越来越大,从而对模数转换器(ADC)的转换速度要求也越来越高。为满足宽带系统需求,需要ADC能够在数百兆甚至上GHz转换速度下实现较高精度的数据转换,这对ADC芯片设计提出了很高的要求。基于0.18μm Bi CMOS工艺,设计了一种时间交织流水线架构的超高速ADC,前端采用一个超高速高精度跟踪保持器,转换核心采用四路并行流水线时域交织工作,内部集成多相位时钟控制电路。实测结果表明:该ADC芯片在800 MS/s速度下性能良好,部分通道最高工作速度可达1.2 GS/s。