The similarity computations for fuzzy membership function pairs were carried out.Fuzzy number related knowledge was introduced,and conventional similarity was compared with distance based similarity measure.The useful...The similarity computations for fuzzy membership function pairs were carried out.Fuzzy number related knowledge was introduced,and conventional similarity was compared with distance based similarity measure.The usefulness of the proposed similarity measure was verified.The results show that the proposed similarity measure could be applied to ordinary fuzzy membership functions,though it was not easy to design.Through conventional results on the calculation of similarity for fuzzy membership pair,fuzzy membership-crisp pair and crisp-crisp pair were carried out.The proposed distance based similarity measure represented rational performance with the heuristic point of view.Furthermore,troublesome in fuzzy number based similarity measure for abnormal universe of discourse case was discussed.Finally,the similarity measure computation for various membership function pairs was discussed with other conventional results.展开更多
Inspired by the idea that bionic non-smooth surfaces(BNSS) can reduce fluid adhesion and resistance, and the effect of bionic V-riblet non-smooth structure arranged in tire tread pattern grooves surface on anti-hydrop...Inspired by the idea that bionic non-smooth surfaces(BNSS) can reduce fluid adhesion and resistance, and the effect of bionic V-riblet non-smooth structure arranged in tire tread pattern grooves surface on anti-hydroplaning performance was investigated by using computational fluid dynamics(CFD). The physical model of the object(model of V-riblet surface distribution, hydroplaning model) and SST k-ω turbulence model were established for numerical analysis of tire hydroplaning. With the help of a orthogonal table L16(45), the parameters of V-riblet structure design compared to the smooth structure were analyzed, and obtained the priority level of the experimental factors as well as the best combination within the scope of the experiment. The simulation results show that V-riblet structure can reduce water flow resistance by disturbing the eddy movement in boundary layers. Then, the preferred type of V-riblet non-smooth structure was arranged on the bottom of tire grooves for hydroplaning performance analysis. The results show that bionic V-riblet non-smooth structure can effectively increase hydroplaning velocity and improve tire anti-hydroplaning performance. Bionic design of tire tread pattern grooves is a good way to promote anti-hydroplaning performance without increasing additional groove space, so that tire grip performance and roll noise are avoided due to grooves space enlargement.展开更多
Wind barriers have attracted significant attention as an effective measure to ensure train safety under crosswinds.However,in past decades,the influence of structural parameters such as the height and ventilation rati...Wind barriers have attracted significant attention as an effective measure to ensure train safety under crosswinds.However,in past decades,the influence of structural parameters such as the height and ventilation ratio of wind barriers on the difference of the average pressure coefficient between the train windward and leeward surface(ΔCp)has not been fully investigated.To determine the influence of the interaction among the three factors,namely the wind barrier height(H),ventilation ratio(R),and distance to the train(D),twenty five numerical simulation cases with different structural parameters were considered based on an orthogonal design.The shear stress transfer(SST)k-ωturbulent model was employed to calculate the wind pressure coefficients,and the calculation accuracy was validated by using wind tunnel experiments.The results indicated that with an increase in R,ΔCp first decreased and then increased,andΔCp decreased while D increased.Moreover,with the increase in H,ΔCp first increased and then decreased.Therefore,these three factors must be considered during the installation of wind barriers.Furthermore,according to a range analysis(judging the relative importance of the three factors intuitively),the three factors were ranked in the following order:R>H>D.Based on a variance analysis,R was found to be of high significance toΔCp,followed by H,which was significant,whereas D had relatively insignificant influence.Finally,the optimal values of R and H were determined to be 20%and 110 mm,respectively.And when R=40%,H=85 mm,the train was relatively unsafe under these such conditions.The findings of this study provide significant guidance for the structural design of wind barriers.展开更多
The application of new-designed levitation controller requires extensive validation prior to enter into commercial service. However, huge mounts of approximations and assumptions lead the theoretical analysis away fro...The application of new-designed levitation controller requires extensive validation prior to enter into commercial service. However, huge mounts of approximations and assumptions lead the theoretical analysis away from the engineering practice. The experimental methods are time-consuming and financial expensive, even unrealizable due to the lack of suitable sensors. Numerical simulations can bridge the gap between the theoretical analysis and experimental techniques. A complete overall dynamic model of maglev levitation system is derived in this work, which includes the simple-supported bridges, the calculation of electromagnetic force with more details, the stress of levitation modules and the cabin. Based on the aforementioned model, it shows that the inherent nonlinearity, inner coupling, misalignments between the sensors and actuators, and self-excited vibration are the main issues that should be considered during the design process of controller. Then, the backstepping controller based on the mathematical model of the module with reasonable simplifications is proposed, and the stability proofs are listed. To show the advantage of controller, two numerical simulation experiments are carried out. Finally, the results illustrating closed-loop performance are provided.展开更多
Deformation prediction and the analysis of underground goaf are important to the safe and efficient recovery of residual ore when shifting from open-pit mining to underground mining.To address the comprehensive proble...Deformation prediction and the analysis of underground goaf are important to the safe and efficient recovery of residual ore when shifting from open-pit mining to underground mining.To address the comprehensive problem of stability in the double mined-out area of the Tong-Lv-Shan(TLS)mine,which employed the dry stacked gangue technology,this paper applies the function fitting theory and a regression analysis method to screen the sensitive interval of four influencing factors based on single-factor experiments and the numerical simulation software FLAC3D.The influencing factors of the TLS mine consist of the column thickness(d),gob area span(D),boundary pillar thickness(h)and height of tailing gangue(H).The fitting degree between the four factors and the displacement of the gob roof(W)is reasonable because the correlation coefficient(R2)is greater than0.9701.After establishing29groups that satisfy the principles of Box-Behnken design(BBD),the dry gangue tailings process was re-simulated for the selected sensitive interval.Using a combination of an analysis of variance(ANOVA),regression equations and a significance analysis,the prediction results of the response surface methodology(RSM)show that the significant degree for the stability of the mined-out area for the factors satisfies the relationship of h>D>d>H.The importance of the four factors cannot be disregarded in a comparison of the prediction results of the engineering test stope in the TLS mine.By comparing the data of monitoring points and function prediction,the proposed method has shown promising results,and the prediction accuracy of RSM model is acceptable.The relative errors of the two test stopes are1.67%and3.85%,respectively,which yield satisfactory reliability and reference values for the mines.展开更多
According to the actual engineering problem that the precise load model of shield machine is difficult to achieve,a design method of sliding mode robust controller oriented to the automatic rectification of shield mac...According to the actual engineering problem that the precise load model of shield machine is difficult to achieve,a design method of sliding mode robust controller oriented to the automatic rectification of shield machine was proposed. Firstly,the nominal load model of shield machine and the ranges of model parameters were obtained by the soil mechanics parameters of certain geological conditions and the messages of the self-learning of shield machine by tunneling for previous segments. Based on this rectification mechanism model with known ranges of parameters,a sliding mode robust controller was proposed. Finally,the simulation analysis was developed to verify the effectiveness of the proposed controller. The simulation results show that the sliding mode robust controller can be implemented in the attitude rectification process of the shield machine and it has stronger robustness to overcome the soil disturbance.展开更多
Under the condition of the designated collection ratio and the interfused ratio of mullock, to ensure the least energy consumption, the parameters of collecting head (the feed speed, the axes height of collecting hea...Under the condition of the designated collection ratio and the interfused ratio of mullock, to ensure the least energy consumption, the parameters of collecting head (the feed speed, the axes height of collecting head, and the rotate speed) are chosen as the optimized parameters. According to the force on the cutting pick, the collecting size of the cobalt crust and bedrock and the optimized energy consumption of the collecting head, the optimized design model of collecting head is built. Taking two hundred groups seabed microtopography for grand in the range of depth displacement from 4.5 to 5.5 era, then making use of the improved simulated annealing genetic algorithm (SAGA), the corresponding optimized result can be obtained. At the same time, in order to speed up the controlling of collecting head, the optimization results are analyzed using the regression analysis method, and the conclusion of the second parameter of the seabed microtopography is drawn.展开更多
Room and pillar sizes are key factors for safe mining and ore recovery in open-stope mining. To investigate the influence of room and pillar configurations on stope stability in highly fractured and weakened areas, an...Room and pillar sizes are key factors for safe mining and ore recovery in open-stope mining. To investigate the influence of room and pillar configurations on stope stability in highly fractured and weakened areas, an orthogonal design with two factors, three levels and nine runs was proposed, followed by three-dimensional numerical simulation using ANSYS and FLAC3~. Results show that surface settlement after excavation is concentrically ringed, and increases with the decrease of pillar width and distances to stope gobs. In the meantime, the ore-control fault at the ore-rock boundary and the fractured argillaceous dolomite with intercalated slate at the hanging wall deteriorate the roof settlement. Additionally, stope stability is challenged due to pillar rheological yield and stress concentration, and both are induced by redistribution of stress and plastic zones after mining. Following an objective function and a constraint function, room and pillar configuration with widths of 14 m and 16 m, respectively, is presented as the optimization for improving the ore recovery rate while maintaining a safe working environment.展开更多
The inner relationship between Markov random field(MRF) and Markov chain random field(MCRF) is discussed. MCRF is a special MRF for dealing with high-order interactions of sparse data. It consists of a single spatial ...The inner relationship between Markov random field(MRF) and Markov chain random field(MCRF) is discussed. MCRF is a special MRF for dealing with high-order interactions of sparse data. It consists of a single spatial Markov chain(SMC) that can move in the whole space. Generally, the theoretical backbone of MCRF is conditional independence assumption, which is a way around the problem of knowing joint probabilities of multi-points. This so-called Naive Bayes assumption should not be taken lightly and should be checked whenever possible because it is mathematically difficult to prove. Rather than trap in this independence proving, an appropriate potential function in MRF theory is chosen instead. The MCRF formulas are well deduced and the joint probability of MRF is presented by localization approach, so that the complicated parameter estimation algorithm and iteration process can be avoided. The MCRF model is then applied to the lithofacies identification of a region and compared with triplex Markov chain(TMC) simulation. Analyses show that the MCRF model will not cause underestimation problem and can better reflect the geological sedimentation process.展开更多
Vegetation plays a key role in improving wind environment of residential districts,and is helpful for creating a comfortable and beautiful living environment.The optimal design of vegetation for wind environment impro...Vegetation plays a key role in improving wind environment of residential districts,and is helpful for creating a comfortable and beautiful living environment.The optimal design of vegetation for wind environment improvement in winter was investigated by carrying out field experiments in Heqingyuan residential area in Beijing,and after that,numerical simulation with SPOTE(simulation platform for outdoor thermal environment) experiments for outdoor thermal environment of vegetation was adopted for comparison.The conclusions were summarized as follows:1) By comparing the experimental data with simulation results,it could be concluded that the wind field simulated was consistent with the actual wind field,and the flow distribution impacted by vegetation could be accurately reflected;2) The wind velocity with vegetation was lower than that without vegetation,and the wind velocity was reduced by 46%;3) By adjusting arrangement and types of vegetation in the regions with excessively large wind velocity,the pedestrian-level wind velocity could be obviously improved through the simulation and comparison.展开更多
Parametric modeling of the impeller which drove a small wind device was built by knowledge fusion technology.NACA2410 airfoil blade was created by KF language.Using technology of UG/KF secondary development for the au...Parametric modeling of the impeller which drove a small wind device was built by knowledge fusion technology.NACA2410 airfoil blade was created by KF language.Using technology of UG/KF secondary development for the automatic modeling of wind turbine blade,the program can read in the airfoil data files automatically and the impeller model entity can be generated automatically.In order to modify the model,the aerodynamic characteristics of the impeller were analyzed for getting aerodynamic parameters by Fluent.The maximum force torch and best parameters of impeller were calculated.A physical prototype impeller was manufactured and the correctness of the design was verified,and the error of force torch between simulation and experimental results is about 10%.Parameterization design of the impeller model greatly improves the efficiency of modeling and flexibility of the CAD system.展开更多
Most modern tall buildings using lighter construction materials are more flexible, which can lead to excessive wind-induced vibrations resulting in occupant discomfort and structural unsafety. It is necessary to predi...Most modern tall buildings using lighter construction materials are more flexible, which can lead to excessive wind-induced vibrations resulting in occupant discomfort and structural unsafety. It is necessary to predict and mitigate such wind-induced vibration at the preliminary design stage. Fluctuating across and along-wind loads acting on a tall building that could not be formulated theoretically were simulated numerically in the time domain using known across and along-wind load spectra. These simulated wind loads were used to estimate the across and along-wind responses of a tall building, which are less narrow-banded processes, based on the state space variable approach. The simulated across-wind response of root-mean-square value(0.0047) and that of KAREEM's(0.0040) and the simulated along-wind response of root-mean-square value(0.021) and that of SOLARI's(0.027) were compared. It is found that these are good approximations of closed form responses. Therefore, these numerically simulated across and along-wind loads can be used for across and along-wind responses estimation for the wind-resistant design of a tall building at the preliminary design stage.展开更多
The residue curve maps are considered as a powerful tool for the preliminary design of reactive distillation. The residue curve maps of ethyl acetate synthesis reaction were calculated based on the pseudo-homogeneous ...The residue curve maps are considered as a powerful tool for the preliminary design of reactive distillation. The residue curve maps of ethyl acetate synthesis reaction were calculated based on the pseudo-homogeneous rate-based kinetic model and the NRTL activity coefficient model. The results show that the unstable node branch emerges from the ethyl acetate/water edge, moving toward the chemical equilibrium surface with the increase of Damkoeler value (D), and the node reaches the ternary reactive azeotrope when D-∞ eventually. Conceptual design for the ethyl acetate synthesis of reactive distillation based on the residue curve maps is presented at last.展开更多
基金Project(2010-0020163) supported by Priority Research Centers Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education,Science and Technology
文摘The similarity computations for fuzzy membership function pairs were carried out.Fuzzy number related knowledge was introduced,and conventional similarity was compared with distance based similarity measure.The usefulness of the proposed similarity measure was verified.The results show that the proposed similarity measure could be applied to ordinary fuzzy membership functions,though it was not easy to design.Through conventional results on the calculation of similarity for fuzzy membership pair,fuzzy membership-crisp pair and crisp-crisp pair were carried out.The proposed distance based similarity measure represented rational performance with the heuristic point of view.Furthermore,troublesome in fuzzy number based similarity measure for abnormal universe of discourse case was discussed.Finally,the similarity measure computation for various membership function pairs was discussed with other conventional results.
基金Project(51405201)supported by the National Natural Science Foundation of ChinaProject(1291120046)supported by the Jiangsu University Advanced Talents Initial Funding,China+1 种基金Project(QC201303)supported by the Open Fund of Automotive Engineering Key Laboratory,ChinaProject(2014M551509)supported by the China Postdoctoral Science Foundation
文摘Inspired by the idea that bionic non-smooth surfaces(BNSS) can reduce fluid adhesion and resistance, and the effect of bionic V-riblet non-smooth structure arranged in tire tread pattern grooves surface on anti-hydroplaning performance was investigated by using computational fluid dynamics(CFD). The physical model of the object(model of V-riblet surface distribution, hydroplaning model) and SST k-ω turbulence model were established for numerical analysis of tire hydroplaning. With the help of a orthogonal table L16(45), the parameters of V-riblet structure design compared to the smooth structure were analyzed, and obtained the priority level of the experimental factors as well as the best combination within the scope of the experiment. The simulation results show that V-riblet structure can reduce water flow resistance by disturbing the eddy movement in boundary layers. Then, the preferred type of V-riblet non-smooth structure was arranged on the bottom of tire grooves for hydroplaning performance analysis. The results show that bionic V-riblet non-smooth structure can effectively increase hydroplaning velocity and improve tire anti-hydroplaning performance. Bionic design of tire tread pattern grooves is a good way to promote anti-hydroplaning performance without increasing additional groove space, so that tire grip performance and roll noise are avoided due to grooves space enlargement.
基金Project(51822803)supported by the National Natural Science Foundation of ChinaProject(2019JJ50688)supported by Hunan Provincial Natural Science Foundation,China+1 种基金Project(kq1905005)supported by Training Program for Excellent Young Innovators of Changsha,ChinaProject(CX20210775)supported by Hunan Provincial Innovative Foundation for Postgraduates,China。
文摘Wind barriers have attracted significant attention as an effective measure to ensure train safety under crosswinds.However,in past decades,the influence of structural parameters such as the height and ventilation ratio of wind barriers on the difference of the average pressure coefficient between the train windward and leeward surface(ΔCp)has not been fully investigated.To determine the influence of the interaction among the three factors,namely the wind barrier height(H),ventilation ratio(R),and distance to the train(D),twenty five numerical simulation cases with different structural parameters were considered based on an orthogonal design.The shear stress transfer(SST)k-ωturbulent model was employed to calculate the wind pressure coefficients,and the calculation accuracy was validated by using wind tunnel experiments.The results indicated that with an increase in R,ΔCp first decreased and then increased,andΔCp decreased while D increased.Moreover,with the increase in H,ΔCp first increased and then decreased.Therefore,these three factors must be considered during the installation of wind barriers.Furthermore,according to a range analysis(judging the relative importance of the three factors intuitively),the three factors were ranked in the following order:R>H>D.Based on a variance analysis,R was found to be of high significance toΔCp,followed by H,which was significant,whereas D had relatively insignificant influence.Finally,the optimal values of R and H were determined to be 20%and 110 mm,respectively.And when R=40%,H=85 mm,the train was relatively unsafe under these such conditions.The findings of this study provide significant guidance for the structural design of wind barriers.
基金Projects(60404003,11202230)supported by the National Natural Science Foundation of China
文摘The application of new-designed levitation controller requires extensive validation prior to enter into commercial service. However, huge mounts of approximations and assumptions lead the theoretical analysis away from the engineering practice. The experimental methods are time-consuming and financial expensive, even unrealizable due to the lack of suitable sensors. Numerical simulations can bridge the gap between the theoretical analysis and experimental techniques. A complete overall dynamic model of maglev levitation system is derived in this work, which includes the simple-supported bridges, the calculation of electromagnetic force with more details, the stress of levitation modules and the cabin. Based on the aforementioned model, it shows that the inherent nonlinearity, inner coupling, misalignments between the sensors and actuators, and self-excited vibration are the main issues that should be considered during the design process of controller. Then, the backstepping controller based on the mathematical model of the module with reasonable simplifications is proposed, and the stability proofs are listed. To show the advantage of controller, two numerical simulation experiments are carried out. Finally, the results illustrating closed-loop performance are provided.
基金Project(2017YFC0602902) supported by the National Science and Technology Pillar Program during the 13th Five-Year Plan Period,ChinaProject(2015CX005) supported by the Innovation Driven Plan of Central South University,ChinaProject(2016zzts445) supported by the Fundamental Research Funds for the Central Universities,China
文摘Deformation prediction and the analysis of underground goaf are important to the safe and efficient recovery of residual ore when shifting from open-pit mining to underground mining.To address the comprehensive problem of stability in the double mined-out area of the Tong-Lv-Shan(TLS)mine,which employed the dry stacked gangue technology,this paper applies the function fitting theory and a regression analysis method to screen the sensitive interval of four influencing factors based on single-factor experiments and the numerical simulation software FLAC3D.The influencing factors of the TLS mine consist of the column thickness(d),gob area span(D),boundary pillar thickness(h)and height of tailing gangue(H).The fitting degree between the four factors and the displacement of the gob roof(W)is reasonable because the correlation coefficient(R2)is greater than0.9701.After establishing29groups that satisfy the principles of Box-Behnken design(BBD),the dry gangue tailings process was re-simulated for the selected sensitive interval.Using a combination of an analysis of variance(ANOVA),regression equations and a significance analysis,the prediction results of the response surface methodology(RSM)show that the significant degree for the stability of the mined-out area for the factors satisfies the relationship of h>D>d>H.The importance of the four factors cannot be disregarded in a comparison of the prediction results of the engineering test stope in the TLS mine.By comparing the data of monitoring points and function prediction,the proposed method has shown promising results,and the prediction accuracy of RSM model is acceptable.The relative errors of the two test stopes are1.67%and3.85%,respectively,which yield satisfactory reliability and reference values for the mines.
基金Project(2007CB714006) supported by the National Basic Research Program of China
文摘According to the actual engineering problem that the precise load model of shield machine is difficult to achieve,a design method of sliding mode robust controller oriented to the automatic rectification of shield machine was proposed. Firstly,the nominal load model of shield machine and the ranges of model parameters were obtained by the soil mechanics parameters of certain geological conditions and the messages of the self-learning of shield machine by tunneling for previous segments. Based on this rectification mechanism model with known ranges of parameters,a sliding mode robust controller was proposed. Finally,the simulation analysis was developed to verify the effectiveness of the proposed controller. The simulation results show that the sliding mode robust controller can be implemented in the attitude rectification process of the shield machine and it has stronger robustness to overcome the soil disturbance.
基金Project(50875265) supported by the National Natural Science Foundation of ChinaProject(20080440992) supported by the Postdoctoral Science Foundation of ChinaProject(2009SK3159) supported by the Technology Support Plan of Hunan Province,China
文摘Under the condition of the designated collection ratio and the interfused ratio of mullock, to ensure the least energy consumption, the parameters of collecting head (the feed speed, the axes height of collecting head, and the rotate speed) are chosen as the optimized parameters. According to the force on the cutting pick, the collecting size of the cobalt crust and bedrock and the optimized energy consumption of the collecting head, the optimized design model of collecting head is built. Taking two hundred groups seabed microtopography for grand in the range of depth displacement from 4.5 to 5.5 era, then making use of the improved simulated annealing genetic algorithm (SAGA), the corresponding optimized result can be obtained. At the same time, in order to speed up the controlling of collecting head, the optimization results are analyzed using the regression analysis method, and the conclusion of the second parameter of the seabed microtopography is drawn.
基金Projects(50934002,51074013,51104100)supported by the National Natural Science Foundation of ChinaProject(IRT0950)supported by the Program for Changjiang Scholars and Innovative Research Team in University of China
文摘Room and pillar sizes are key factors for safe mining and ore recovery in open-stope mining. To investigate the influence of room and pillar configurations on stope stability in highly fractured and weakened areas, an orthogonal design with two factors, three levels and nine runs was proposed, followed by three-dimensional numerical simulation using ANSYS and FLAC3~. Results show that surface settlement after excavation is concentrically ringed, and increases with the decrease of pillar width and distances to stope gobs. In the meantime, the ore-control fault at the ore-rock boundary and the fractured argillaceous dolomite with intercalated slate at the hanging wall deteriorate the roof settlement. Additionally, stope stability is challenged due to pillar rheological yield and stress concentration, and both are induced by redistribution of stress and plastic zones after mining. Following an objective function and a constraint function, room and pillar configuration with widths of 14 m and 16 m, respectively, is presented as the optimization for improving the ore recovery rate while maintaining a safe working environment.
基金Project(2011ZX05002-005-006) supported by the National Science and Technology Major Research Program during the Twelfth Five-Year Plan of China
文摘The inner relationship between Markov random field(MRF) and Markov chain random field(MCRF) is discussed. MCRF is a special MRF for dealing with high-order interactions of sparse data. It consists of a single spatial Markov chain(SMC) that can move in the whole space. Generally, the theoretical backbone of MCRF is conditional independence assumption, which is a way around the problem of knowing joint probabilities of multi-points. This so-called Naive Bayes assumption should not be taken lightly and should be checked whenever possible because it is mathematically difficult to prove. Rather than trap in this independence proving, an appropriate potential function in MRF theory is chosen instead. The MCRF formulas are well deduced and the joint probability of MRF is presented by localization approach, so that the complicated parameter estimation algorithm and iteration process can be avoided. The MCRF model is then applied to the lithofacies identification of a region and compared with triplex Markov chain(TMC) simulation. Analyses show that the MCRF model will not cause underestimation problem and can better reflect the geological sedimentation process.
基金Project(50878111) supported by the National Natural Science Foundation of China
文摘Vegetation plays a key role in improving wind environment of residential districts,and is helpful for creating a comfortable and beautiful living environment.The optimal design of vegetation for wind environment improvement in winter was investigated by carrying out field experiments in Heqingyuan residential area in Beijing,and after that,numerical simulation with SPOTE(simulation platform for outdoor thermal environment) experiments for outdoor thermal environment of vegetation was adopted for comparison.The conclusions were summarized as follows:1) By comparing the experimental data with simulation results,it could be concluded that the wind field simulated was consistent with the actual wind field,and the flow distribution impacted by vegetation could be accurately reflected;2) The wind velocity with vegetation was lower than that without vegetation,and the wind velocity was reduced by 46%;3) By adjusting arrangement and types of vegetation in the regions with excessively large wind velocity,the pedestrian-level wind velocity could be obviously improved through the simulation and comparison.
基金Project(gjd-09041)supported by the Natural Science Foundation of Shanghai Municipal Education Commission,China
文摘Parametric modeling of the impeller which drove a small wind device was built by knowledge fusion technology.NACA2410 airfoil blade was created by KF language.Using technology of UG/KF secondary development for the automatic modeling of wind turbine blade,the program can read in the airfoil data files automatically and the impeller model entity can be generated automatically.In order to modify the model,the aerodynamic characteristics of the impeller were analyzed for getting aerodynamic parameters by Fluent.The maximum force torch and best parameters of impeller were calculated.A physical prototype impeller was manufactured and the correctness of the design was verified,and the error of force torch between simulation and experimental results is about 10%.Parameterization design of the impeller model greatly improves the efficiency of modeling and flexibility of the CAD system.
基金Project(2011-0028567)supported by the National Research Foundation of Korea
文摘Most modern tall buildings using lighter construction materials are more flexible, which can lead to excessive wind-induced vibrations resulting in occupant discomfort and structural unsafety. It is necessary to predict and mitigate such wind-induced vibration at the preliminary design stage. Fluctuating across and along-wind loads acting on a tall building that could not be formulated theoretically were simulated numerically in the time domain using known across and along-wind load spectra. These simulated wind loads were used to estimate the across and along-wind responses of a tall building, which are less narrow-banded processes, based on the state space variable approach. The simulated across-wind response of root-mean-square value(0.0047) and that of KAREEM's(0.0040) and the simulated along-wind response of root-mean-square value(0.021) and that of SOLARI's(0.027) were compared. It is found that these are good approximations of closed form responses. Therefore, these numerically simulated across and along-wind loads can be used for across and along-wind responses estimation for the wind-resistant design of a tall building at the preliminary design stage.
基金Project(2008-XY-6) supported by the Development of Science and Technology Start-up Fund of Fuzhou University, ChinaProject(XRC-0826) supported by the Talents Fund of Fuzhou University, China
文摘The residue curve maps are considered as a powerful tool for the preliminary design of reactive distillation. The residue curve maps of ethyl acetate synthesis reaction were calculated based on the pseudo-homogeneous rate-based kinetic model and the NRTL activity coefficient model. The results show that the unstable node branch emerges from the ethyl acetate/water edge, moving toward the chemical equilibrium surface with the increase of Damkoeler value (D), and the node reaches the ternary reactive azeotrope when D-∞ eventually. Conceptual design for the ethyl acetate synthesis of reactive distillation based on the residue curve maps is presented at last.