期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于自适应权重粒子群优化算法的地下水污染溯源辨识 被引量:7
1
作者 高琬玉 卢文喜 +1 位作者 潘紫东 白玉堃 《中国农村水利水电》 北大核心 2022年第12期1-7,16,共8页
地下水污染溯源辨识是指利用监测井的观测数据对污染源信息进行识别。然而,在应用模拟-优化方法进行溯源工作时,多次运行数值模拟模型会带来较大的计算负荷;在利用传统粒子群算法求解优化模型时,易陷入局部极值点,严重影响辨识结果的精... 地下水污染溯源辨识是指利用监测井的观测数据对污染源信息进行识别。然而,在应用模拟-优化方法进行溯源工作时,多次运行数值模拟模型会带来较大的计算负荷;在利用传统粒子群算法求解优化模型时,易陷入局部极值点,严重影响辨识结果的精度。研究基于假想算例,应用模拟-优化方法,将模拟模型作为等式约束条件,以模拟输出值与实际观测值之间的偏差极小化作为目标函数,连同其他非负约束条件建立优化模型,对三个潜在污染源的释放历史及渗透系数进行了联合识别。通过训练BP神经网络,建立数值模拟模型的替代模型,以缓解沉重的计算负荷;为了避免求解优化模型时陷入局部极值,研究提出了一种自适应权重算法,增强了传统粒子群优化算法跳出局部极值点的能力,识别结果表明:①运用BP神经网络所建立的替代模型能够很好地近似模拟模型的输入-输出关系,拟合精度达到0.99,且运行速度明显快于数值模拟模型,证明了其可以代替数值模拟模型嵌入优化模型中进行污染源溯源辨识工作;②同运用传统粒子群优化算法相比较,运用自适应权重粒子群优化算法,对优化算法的参数和迭代终止条件进行调节,可以有效地提高算法的收敛速度和计算效率,收敛得到的最优解的相对误差基本小于5%。 展开更多
关键词 污染源溯源辨识 模拟-优化方法 替代模型 自适应权重粒子群算法 BP神经网络方法
在线阅读 下载PDF
基于典型耦合优化算法的城市交通拥塞点源反演识别研究
2
作者 赵雪亭 胡立伟 《交通运输系统工程与信息》 EI CSCD 北大核心 2023年第2期74-83,共10页
应用模拟-优化方法研究城市交通拥塞源的位置识别及数据推演问题。首先,构建一个假想城市交通拥塞案例,引入地下水污染质运移模型,并结合城市交通拥塞特征,改进模型适应性,利用Cholesky分解方法建立描述城市交通拥塞非均质性的城市交通... 应用模拟-优化方法研究城市交通拥塞源的位置识别及数据推演问题。首先,构建一个假想城市交通拥塞案例,引入地下水污染质运移模型,并结合城市交通拥塞特征,改进模型适应性,利用Cholesky分解方法建立描述城市交通拥塞非均质性的城市交通流出率连续场。其次,采用Kriging和BP (Back Propagation)神经网络建立城市交通拥塞数值模拟模型的替代模型,通过平均相对误差、确定性系数及均方根误差检验替代模型精度。最后,利用麻雀搜索算法(SSA)和遗传算法(GA)求解优化模型,通过平均相对误差检验反演识别结果。研究结果表明:利用Cholesky分解方法,得到城市交通流出率分布不均,符合城市交通拥塞异质性特征,且均值为322.15,处于中等扩散水平;Kriging替代模型精度更高,平均相对误差为0.98%;应用SSA和GA均能快速准确地识别城市交通拥塞源的位置及交通扩散量,SSA相较于GA的交通拥塞源位置的整体相对误差提高1.68%,交通量的整体相对误差提升2.52%。综上,基于Kriging和SSA方法耦合的模拟-优化模型可以有效识别城市交通拥塞源和交通扩散交通量,且识别精度较高,可为城市交通拥塞源控制及交通扩散管控方案提供重要参考。 展开更多
关键词 城市交通 反演识别 模拟-优化方法 城市交通拥塞 连续场划分
在线阅读 下载PDF
Algorithm for solving the bi-level decision making problem with continuous variables in the upper level based on genetic algorithm 被引量:2
3
作者 肖剑 《Journal of Chongqing University》 CAS 2005年第1期59-62,共4页
Based on genetic algorithms, a solution algorithm is presented for the bi-level decision making problem with continuous variables in the upper level in accordance with the bi-level decision making principle. The algor... Based on genetic algorithms, a solution algorithm is presented for the bi-level decision making problem with continuous variables in the upper level in accordance with the bi-level decision making principle. The algorithm is compared with Monte Carlo simulated annealing algorithm, and its feasibility and effectiveness are verified with two calculating examples. 展开更多
关键词 bi-level decision making Monte Carlo simulated annealing genetic algorithms
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部