期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
求解柔性Job-shop调度问题的混合粒子群算法
1
作者 宋存利 时维国 《大连交通大学学报》 CAS 2013年第6期103-107,共5页
针对柔性Job-shop调度问题,提出了一种混合粒子群算法,该算法对设备分配和工序调度采用不同的编码方法和更新方式,提出了基于设备的初始化算法和基于工件序列的初始化算法来提高PSO初始种群的质量,同时提出了4种不同的邻域结构,分别实... 针对柔性Job-shop调度问题,提出了一种混合粒子群算法,该算法对设备分配和工序调度采用不同的编码方法和更新方式,提出了基于设备的初始化算法和基于工件序列的初始化算法来提高PSO初始种群的质量,同时提出了4种不同的邻域结构,分别实现了基于此四种邻域结构的模拟退火搜索算法,将它与粒子群算法进行有效混合来提高粒子群算法的局部搜索能力,实验表明HPSO的有效性. 展开更多
关键词 粒子群算法 柔性Job-shop调度问题 模拟退化算法
在线阅读 下载PDF
未知环境下一种移动机器人实时最优路径规划方法研究 被引量:4
2
作者 曹政才 温金涛 吴启迪 《电子学报》 EI CAS CSCD 北大核心 2010年第11期2535-2539,共5页
针对未知环境下移动机器人的安全路径规划问题,提出一种基于改进神经网络和模拟退火算法相结合的方法.神经网络表示机器人的工作空间,通过BP反向算法学习外部环境结构特征和信息表示,进而优化障碍物神经网络的连接权值,利用模拟退火算... 针对未知环境下移动机器人的安全路径规划问题,提出一种基于改进神经网络和模拟退火算法相结合的方法.神经网络表示机器人的工作空间,通过BP反向算法学习外部环境结构特征和信息表示,进而优化障碍物神经网络的连接权值,利用模拟退火算法搜寻代价函数的负梯度方向,采用组合探测器来减小模拟退火算法搜索区域和应用后退策略及设置虚拟目标点的方法处理局部路径规划中出现的陷阱问题.仿真验证此方法有效性和正确性. 展开更多
关键词 移动机器人 路经规划 BP神经网络 模拟退化算法
在线阅读 下载PDF
基于优化聚类的组合风速短期预测 被引量:1
3
作者 陈记牢 栗惠惠 +2 位作者 李富强 郝飞 张圆美 《可再生能源》 CAS 北大核心 2017年第12期1841-1846,共6页
准确的风功率预测对电力系统安全、稳定运行具有重要意义,而风速预测是风功率预测的关键。文章提出一种基于优化模糊C均值(Optimal Fuzzy C means,OFCM)聚类的组合风速短期预测方法。首先,采用模拟退火遗传算法优化模糊C均值聚类算法的... 准确的风功率预测对电力系统安全、稳定运行具有重要意义,而风速预测是风功率预测的关键。文章提出一种基于优化模糊C均值(Optimal Fuzzy C means,OFCM)聚类的组合风速短期预测方法。首先,采用模拟退火遗传算法优化模糊C均值聚类算法的初始聚类中心;其次,基于优化模糊C均值聚类算法将初始风速属性样本数据进行分组;再根据不同风速样本组,运用极限学习机(Extremely Learning Machine,ELM)构建组合风速预测模型;最后,通过风速实测值与预测值的对比,验证了该方法的可行性。 展开更多
关键词 风速预测 模拟退化遗传算法 FCM聚类 极限学习机
在线阅读 下载PDF
Advanced Coverage Optimization Techniques for Small Cell Clusters 被引量:2
4
作者 HUANG Liang ZHOU Yiqing +3 位作者 WANG Yuanyuan HAN Xue SHI Jinglin CHEN Xunxun 《China Communications》 SCIE CSCD 2015年第8期111-122,共12页
Coverage challenge for small considered to be a optlmlzation is a main cell clusters which are promising solution to provide seamless cellular coverage for large indoor or outdoor areas. This paper focuses on small ce... Coverage challenge for small considered to be a optlmlzation is a main cell clusters which are promising solution to provide seamless cellular coverage for large indoor or outdoor areas. This paper focuses on small cell cluster coverage problems and proposes both centralized and distributed self-optimization methods. Modified Particle swarm optimization (MPSO) is introduced to centralized optimization which employs particle swarm optimization (PSO) and introduces a heuristic power control scheme to accelerate the algorithm to search tbr the global optimum solution. Distributed coverage optimization is modeled as a non-cooperative game, with a utility function considering both throughput and interference. An iterative power control algorithm is then proposed using game theory (DGT) which converges to Nash Equilibrium (NE). Simulation results show that both MPSO and DGT have excellent performance in coverage optimization and outperform optimization using simulated annealing algorithm (SA), reaching higher coverage ratio and throughput while with less iterations. 展开更多
关键词 small cell cluster coverage op- timization particle swarm optimization gametheory
在线阅读 下载PDF
Novel Adaptive Simulated Annealing Algorithm for Constrained Multi-Objective Optimization 被引量:4
5
作者 Chuai Gang Zhao Dan Sun Li 《China Communications》 SCIE CSCD 2012年第9期68-78,共11页
In recent years, sinmlated annealing algo-rithms have been extensively developed and uti-lized to solve nmlti-objective optimization problems. In order to obtain better optimization perfonmnce, this paper proposes a N... In recent years, sinmlated annealing algo-rithms have been extensively developed and uti-lized to solve nmlti-objective optimization problems. In order to obtain better optimization perfonmnce, this paper proposes a Novel Adaptive Simulated Annealing (NASA) algorithm for constrained multi-objective optimization based on Archived Multi-objective Simulated Annealing (AMOSA). For han-dling multi-objective, NASA makes improverrents in three aspects: sub-iteration search, sub-archive and adaptive search, which effectively strengthen the stability and efficiency of the algorithnm For handling constraints, NASA introduces corresponding solution acceptance criterion. Furtherrrore, NASA has also been applied to optimize TD-LTE network perform-ance by adjusting antenna paranleters; it can achieve better extension and convergence than AMOSA, NS-GAII and MOPSO. Analytical studies and simulations indicate that the proposed NASA algorithm can play an important role in improving multi-objective optimi-zation performance. 展开更多
关键词 simulated annealing constrained rmlti-objective optimizaztion adaptive sub-iteration search-ing sub-archive PARETO-OPTIMAL
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部