The classic multi-mode input shapers(MMISs)are valid to decrease multi-mode residual vibration of manipulators or robots simultaneously.But these input shapers cannot suppress more residual vibration with a quick resp...The classic multi-mode input shapers(MMISs)are valid to decrease multi-mode residual vibration of manipulators or robots simultaneously.But these input shapers cannot suppress more residual vibration with a quick response time when the frequency bandwidth of each mode vibration is very different.The methodologies and various types of multi-mode classic and hybrid input shaping control schemes with positive impulses were introduced in this paper.Six types of two-mode hybrid input shapers with positive impulses of a 3 degree of freedom robot were established.The ability and robustness of these two-mode hybrid input shapers to suppress residual vibration were analyzed by vibration response curve and sensitivity curve via numerical simulation.The response time of the zero vibration-zero vibration and derivative(ZV-ZVD)input shaper is the fastest,but the robustness is the least.The robustness of the zero vibration and derivative-extra insensitive(ZVD-EI)input shaper is the best,while the response time is the longest.According to the frequency bandwidth at each mode and required system response time,the most appropriate multi-mode hybrid input shaper(MMHIS)can be selected in order to improve response time as much as possible under the condition of suppressing more residual vibration.展开更多
In order to find the dynamic response laws of retaining walls affected by certain earthquake loads,the influence of the seismic wave characteristics and sub-grade fill parameters(including the foundation surface slope...In order to find the dynamic response laws of retaining walls affected by certain earthquake loads,the influence of the seismic wave characteristics and sub-grade fill parameters(including the foundation surface slope) were focused on,and a series of tests were performed.The results show that the maximum stress of the retaining wall decreases as internal friction angle,foundation slope,filled soil cohesion and the biggest dynamic elastic modulus increase,while it increases with the seismic frequency and seismic input peak dropping.The addition value of dynamics earth pressure increases when seismic frequency and seismic input peak are reduced,while it decreases when the filled soil cohesion and internal friction angle rise.Meanwhile,dynamic elastic modulus and foundation slope have no obvious influences on addition value of dynamics earth pressure.The slope will be instable if the seismic input peak exceeds 0.5g and be disruptive if seismic frequency is larger than 2.5 Hz.The mid-lower parts of retaining walls are in most heavy and obvious response to these factors,which reveals the mechanism of "belly burst" in retaining wall that appears commonly in practical projects.展开更多
基金Project(LQ12E05008)supported by Natural Science Foundation of Zhejiang Province,ChinaProject(201708330107)supported by China Scholarship Council
文摘The classic multi-mode input shapers(MMISs)are valid to decrease multi-mode residual vibration of manipulators or robots simultaneously.But these input shapers cannot suppress more residual vibration with a quick response time when the frequency bandwidth of each mode vibration is very different.The methodologies and various types of multi-mode classic and hybrid input shaping control schemes with positive impulses were introduced in this paper.Six types of two-mode hybrid input shapers with positive impulses of a 3 degree of freedom robot were established.The ability and robustness of these two-mode hybrid input shapers to suppress residual vibration were analyzed by vibration response curve and sensitivity curve via numerical simulation.The response time of the zero vibration-zero vibration and derivative(ZV-ZVD)input shaper is the fastest,but the robustness is the least.The robustness of the zero vibration and derivative-extra insensitive(ZVD-EI)input shaper is the best,while the response time is the longest.According to the frequency bandwidth at each mode and required system response time,the most appropriate multi-mode hybrid input shaper(MMHIS)can be selected in order to improve response time as much as possible under the condition of suppressing more residual vibration.
基金Project(2006-318-740-20) supported by the West Project from the Department of Transportation of China
文摘In order to find the dynamic response laws of retaining walls affected by certain earthquake loads,the influence of the seismic wave characteristics and sub-grade fill parameters(including the foundation surface slope) were focused on,and a series of tests were performed.The results show that the maximum stress of the retaining wall decreases as internal friction angle,foundation slope,filled soil cohesion and the biggest dynamic elastic modulus increase,while it increases with the seismic frequency and seismic input peak dropping.The addition value of dynamics earth pressure increases when seismic frequency and seismic input peak are reduced,while it decreases when the filled soil cohesion and internal friction angle rise.Meanwhile,dynamic elastic modulus and foundation slope have no obvious influences on addition value of dynamics earth pressure.The slope will be instable if the seismic input peak exceeds 0.5g and be disruptive if seismic frequency is larger than 2.5 Hz.The mid-lower parts of retaining walls are in most heavy and obvious response to these factors,which reveals the mechanism of "belly burst" in retaining wall that appears commonly in practical projects.