The modal characteristics of the transverse vibration of an axially moving roller chain coupled with lumped mass were analyzed.The chain system was modeled by using the multi-body dynamics theory and the governing equ...The modal characteristics of the transverse vibration of an axially moving roller chain coupled with lumped mass were analyzed.The chain system was modeled by using the multi-body dynamics theory and the governing equations were derived by means of Lagrange's equations.The effects of the parameters,such as the axially moving velocity of the chain,the tension force,the weight of lumped mass and its time-variable assign position in chain span,on the modal characteristics of transverse vibration for roller chain were investigated.The numerical examples were given.It is found that the natural frequencies and the corresponding mode shapes of the transverse vibration for roller chain coupled with lumped mass change significantly when the variations of above parameters are considered.With the movement of the chain strand,the natural frequencies present a fluctuating phenomenon,which is different from the uniform chain.The higher the order of mode is,the greater the fluctuating magnitude and frequency are.展开更多
In order to study the variation of machine tools’dynamic characteristics in the manufacturing space,a Kriging approximate model is proposed.Finite element method(FEM)is employed on the platform of ANSYS to establish ...In order to study the variation of machine tools’dynamic characteristics in the manufacturing space,a Kriging approximate model is proposed.Finite element method(FEM)is employed on the platform of ANSYS to establish finite element(FE)model with the dynamic characteristic of combined interface for a milling machine,which is newly designed for producing aero engine blades by a certain enterprise group in China.The stiffness and damping of combined interfaces are adjusted by using adaptive simulated annealing algorithm with the optimizing software of iSIGHT in the process of FE model update according to experimental modal analysis(EMA)results.The Kriging approximate model is established according to the finite element analysis results utilizing orthogonal design samples by taking into account of the range of configuration parameters.On the basis of the Kriging approximate model,the response surfaces between key response parameter and configuration parameters are obtained.The results indicate that configuration parameters have great effects on dynamic characteristics of machine tools,and the Kriging approximate model is an effective and rapid method for estimating dynamic characteristics of machine tools in the manufacturing space.展开更多
基金Project(50605060) supported by the National Natural Science Foundation of ChinaProject(20050056058) supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(06YFJMJC03300) supported by the National Science Foundation of Tianjin,China
文摘The modal characteristics of the transverse vibration of an axially moving roller chain coupled with lumped mass were analyzed.The chain system was modeled by using the multi-body dynamics theory and the governing equations were derived by means of Lagrange's equations.The effects of the parameters,such as the axially moving velocity of the chain,the tension force,the weight of lumped mass and its time-variable assign position in chain span,on the modal characteristics of transverse vibration for roller chain were investigated.The numerical examples were given.It is found that the natural frequencies and the corresponding mode shapes of the transverse vibration for roller chain coupled with lumped mass change significantly when the variations of above parameters are considered.With the movement of the chain strand,the natural frequencies present a fluctuating phenomenon,which is different from the uniform chain.The higher the order of mode is,the greater the fluctuating magnitude and frequency are.
基金Project(2009ZX04001-073)supported by the Important National Science&Technology Specific Projects of ChinaProject(51105025)supported by the National Natural Science Foundation of China
文摘In order to study the variation of machine tools’dynamic characteristics in the manufacturing space,a Kriging approximate model is proposed.Finite element method(FEM)is employed on the platform of ANSYS to establish finite element(FE)model with the dynamic characteristic of combined interface for a milling machine,which is newly designed for producing aero engine blades by a certain enterprise group in China.The stiffness and damping of combined interfaces are adjusted by using adaptive simulated annealing algorithm with the optimizing software of iSIGHT in the process of FE model update according to experimental modal analysis(EMA)results.The Kriging approximate model is established according to the finite element analysis results utilizing orthogonal design samples by taking into account of the range of configuration parameters.On the basis of the Kriging approximate model,the response surfaces between key response parameter and configuration parameters are obtained.The results indicate that configuration parameters have great effects on dynamic characteristics of machine tools,and the Kriging approximate model is an effective and rapid method for estimating dynamic characteristics of machine tools in the manufacturing space.