期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于集总平均经验模态分解法(EEMD)的星箭解锁分离机构冲击响应分析 被引量:8
1
作者 汪国元 徐洋 +2 位作者 胡晓楠 盛晓伟 蒋青飞 《振动与冲击》 EI CSCD 北大核心 2018年第1期47-52,共6页
基于集总平均经验模态分解(Ensemble Empirical Mode Decomposition,EEMD),提出一种星箭解锁分离机构冲击响应信号分析新方法。通过EEMD,将星箭解锁分离机构解锁过程的冲击信号分解成不同模态分量(Intrinsic Mode Function,IMF)。结果... 基于集总平均经验模态分解(Ensemble Empirical Mode Decomposition,EEMD),提出一种星箭解锁分离机构冲击响应信号分析新方法。通过EEMD,将星箭解锁分离机构解锁过程的冲击信号分解成不同模态分量(Intrinsic Mode Function,IMF)。结果表明前两阶模态分量IMF主要为冲击引起的高频振动,而IMF3之后为冲击激励引起的不同阶固有模态振动和局部振动,并通过模态实验验证了分析的正确性。 展开更多
关键词 星箭解锁分离机构 集总平均经验模态分解法(EEMD) 模态分量imf 冲击响应
在线阅读 下载PDF
基于经验模态分解的属性优化方法 被引量:8
2
作者 陈伟 王尚旭 啜晓宇 《石油地球物理勘探》 EI CSCD 北大核心 2013年第1期121-127,1,共7页
本文提出了一种基于经验模态分解的属性优化新方法,其具体步骤为:首先对某一种地震属性的各个列向量分别进行经验模态分解,得到各个列向量的固有模态分量组;其次分别对每一组固有模态分量的各个分量的权重进行归一化,并将前若干分量分... 本文提出了一种基于经验模态分解的属性优化新方法,其具体步骤为:首先对某一种地震属性的各个列向量分别进行经验模态分解,得到各个列向量的固有模态分量组;其次分别对每一组固有模态分量的各个分量的权重进行归一化,并将前若干分量分别乘以相应的归一化权重系数后再线性相加得到新的列向量,进而构成优化后的属性矩阵;然后对其他几种参与优化的属性也实行前面两个步骤,分别得到相应的新的地震属性矩阵;最后将得到的新地震属性矩阵进行线性叠加,得到优化后的地震属性矩阵。将经验模态分解方法和主成分分析方法分别应用于相同的实际资料,试验证明前者在保证运行效率的情况下能用更少的主成分(固有模态分量)刻画出更多的原始属性信息,并且提高了原始属性剖面的分辨率。 展开更多
关键词 主成分分析(PCA) 经验模态分解(EMD) 属性优化 固有模态分量(imf)
在线阅读 下载PDF
基于经验小波变换的地震资料噪声压制方法 被引量:11
3
作者 覃发兵 徐振旺 +4 位作者 啜晓宇 张小明 郭乃川 董玉文 陈伟 《中国石油勘探》 CAS 北大核心 2018年第5期100-110,共11页
噪声压制是地震资料处理中重要的环节,目前已有的去噪技术存在着噪声去除不干净、有效信号丢失、不能处理非线性非平稳信号等问题。经验小波变换(Empirical Wavelet Transform,简写为EWT)是一种能自适应分解原始信号的算法,其相较于经... 噪声压制是地震资料处理中重要的环节,目前已有的去噪技术存在着噪声去除不干净、有效信号丢失、不能处理非线性非平稳信号等问题。经验小波变换(Empirical Wavelet Transform,简写为EWT)是一种能自适应分解原始信号的算法,其相较于经典的经验模态分解(Empirical Mode Decomposition,简写为EMD)具有更好的自适应性和完善的数学理论基础。将EWT算法引入到地震资料噪声压制中,选取合适的小波函数并利用EWT算法对目标地震信号进行自适应分解,得到其各个频率尺度的固有模态分量;然后根据原始地震信号的主频设定阈值范围,选取主频值在阈值范围内的固有模态分量进行重构,最终获取去噪后的地震信号。结果表明将EWT噪声压制算法应用于数值模型和实际地震资料中,可以很好地实现有效信号和噪声的分离,结果均比常规算法的去噪效果要好。 展开更多
关键词 经验模态分解(EMD) 总体经验模态分解(EEMD) 经验小波变换(EWT) 固有模态分量(imf) 去噪
在线阅读 下载PDF
基于改进的MEEMD的隧道掘进爆破振动信号去噪优化分析 被引量:8
4
作者 周红敏 赵事成 +3 位作者 赵文清 王双 郝广伟 张宪堂 《振动与冲击》 EI CSCD 北大核心 2023年第10期74-81,共8页
爆破振动信号受现场条件限制,多为复杂含噪信号,对降噪方法的性能提出更高要求。为了获得真实振动特征,建立了一种基于改进的总体平均经验模态分解(modified ensemble empirical mode decomposition,MEEMD)的联合去噪方法。首先,将原始... 爆破振动信号受现场条件限制,多为复杂含噪信号,对降噪方法的性能提出更高要求。为了获得真实振动特征,建立了一种基于改进的总体平均经验模态分解(modified ensemble empirical mode decomposition,MEEMD)的联合去噪方法。首先,将原始信号进行MEEMD分解得到本征模态分量(intrinsic mode function,IMF),结合相关系数和样本熵(sample entropy,SE)-Hurst指数进行IMF分类;然后,针对含噪IMF分量中的残留噪声,使用最小均方(least mean square,LMS)自适应滤波进行降噪,达到信号去噪的目的。算法对比结果表明:在仿真试验中,MEEMD-LMS相较互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)、快速集合经验模态分解(fast ensemble empirical mode decomposition,FEEMD)等方法表现出更优的降噪性能;在隧道掘进爆破的实例分析中,MEEMD-LMS相较MEEMD对高频噪声的降噪效果更好,低频段频谱更清晰,具备良好的适用性。 展开更多
关键词 隧道掘进 爆破振动 改进的总体平均经验模态分解(MEEMD) 最小均方(LMS)滤波 本征模态分量(imf)评价
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部