期刊文献+
共找到5,519篇文章
< 1 2 250 >
每页显示 20 50 100
基于集成经验模态分解和极限学习机的质子交换膜燃料电池寿命预测 被引量:2
1
作者 陈景文 杨淇 +2 位作者 兰天一 华志广 赵冬冬 《太阳能学报》 北大核心 2025年第2期135-141,共7页
基于数据驱动的预测方法可实现质子交换膜燃料电池(PEMFC)的寿命预测。为提高质子交换膜燃料电池(PEMFC)寿命预测精度,提出将集成经验模态分解(EEMD)和粒子群算法(PSO)优化极限学习机(ELM)相结合的PEMFC剩余使用寿命预测方法。首先,采... 基于数据驱动的预测方法可实现质子交换膜燃料电池(PEMFC)的寿命预测。为提高质子交换膜燃料电池(PEMFC)寿命预测精度,提出将集成经验模态分解(EEMD)和粒子群算法(PSO)优化极限学习机(ELM)相结合的PEMFC剩余使用寿命预测方法。首先,采用移动平均滤波法在滤除噪声和尖峰的同时,保留原始数据的主要趋势;其次,通过EEMD对原始数据进行多时间尺度分解,得到不同时间尺度下PEMFC的老化信息;最后,将分解后的本征模函数分别通过PSO优化的ELM模型进行预测,能在保证预测精度的情况下降低运算复杂度。通过与经典的极限学习机模型预测结果进行对比,该方法能更加准确地预测PEMFC的老化趋势。 展开更多
关键词 质子交换膜燃料电池 预测 经验模态分解 极限学习机
在线阅读 下载PDF
基于参数优化变分模态分解的信号降噪方法 被引量:1
2
作者 何玉洁 李新娥 贺俊 《现代电子技术》 北大核心 2025年第2期70-76,共7页
针对心电信号中肌电干扰噪声难以去除的问题,提出一种基于参数优化变分模态分解(VMD)的信号降噪方法。通过设计动态边界策略和反向种群生成方式,对白鲸优化(BWO)算法进行改进;采用改进白鲸优化算法对VMD参数自适应寻优,确定分解层数K与... 针对心电信号中肌电干扰噪声难以去除的问题,提出一种基于参数优化变分模态分解(VMD)的信号降噪方法。通过设计动态边界策略和反向种群生成方式,对白鲸优化(BWO)算法进行改进;采用改进白鲸优化算法对VMD参数自适应寻优,确定分解层数K与惩罚因子α;对含噪心电信号进行分解,得到k个本征模态函数(IMF)分量,同时采用相关系数法进行有效模态和含噪模态识别;对噪声主导的模态分量采用小波阈值降噪,并重构信号主导模态与降噪后模态。对仿真信号与含真实肌电干扰的心电信号进行降噪处理,实验结果表明,所提方法去噪效果优于小波阈值去噪法、EMD法、EMD-小波阈值去噪法,真实含噪的心电信号经该方法去噪后自相关系数可达0.91以上。 展开更多
关键词 变分模态分解 信号降噪 参数优化 改进白鲸优化算法 心电信号 IMF分量 小波阈值降噪 肌电干扰
在线阅读 下载PDF
基于改进经验模态分解与BiLSTM神经网络的低矮房屋脉动风压时程预测 被引量:1
3
作者 邱冶 袁有明 伞冰冰 《湖南大学学报(自然科学版)》 北大核心 2025年第3期82-93,共12页
为解决风压测量中传感器数据间歇性缺失问题,提出基于改进经验模态分解算法(IEMD)和双向长短期记忆网络(BiLSTM)的结构表面风压时程预测方法.首先,采用基于软筛分停止准则的改进经验模态分解方法,将风压时程自适应地分解为多个固有模态... 为解决风压测量中传感器数据间歇性缺失问题,提出基于改进经验模态分解算法(IEMD)和双向长短期记忆网络(BiLSTM)的结构表面风压时程预测方法.首先,采用基于软筛分停止准则的改进经验模态分解方法,将风压时程自适应地分解为多个固有模态函数,并通过样本熵对其进行重构获得子序列;其次,针对各子序列完成双向长短期记忆网络的构建、训练及预测,并利用贝叶斯优化(BO)算法对神经网络超参数进行优化;最后,基于低矮房屋风洞测压试验数据进行了风荷载预测,验证了学习模型的有效性.研究表明,与传统预测模型(多层感知器、BiLSTM)相比,基于改进经验模态分解与BiLSTM神经网络的预测模型具有较高的预测精度和计算效率,适用于高斯与非高斯风压信号预测. 展开更多
关键词 低矮房屋 风荷载 深度学习 双向LSTM 改进经验模态分解 贝叶斯优化 时程预测
在线阅读 下载PDF
基于变分模态分解的宽频信号估计算法 被引量:2
4
作者 符玲 郭颖 +2 位作者 李红艳 熊思宇 李小鹏 《电网技术》 北大核心 2025年第2期748-758,共11页
随着新能源并网的发展,电网宽频振荡频发,且具有频率范围宽、模态分量多等特点。而现有的宽频信号估计方法由于存在忽略各基波动态变化、未能很好降低分量间的相互干扰等情况而无法提供准确的宽频振荡相关参数信息。因此,该文提出一种... 随着新能源并网的发展,电网宽频振荡频发,且具有频率范围宽、模态分量多等特点。而现有的宽频信号估计方法由于存在忽略各基波动态变化、未能很好降低分量间的相互干扰等情况而无法提供准确的宽频振荡相关参数信息。因此,该文提出一种考虑基波动态、降低相互干扰的宽频信号估计方法,以实现信号参数的高精度辨识,为宽频振荡分析、扰动溯源定位等应用提供数据支撑。首先,利用变分模态分解(variational mode decomposition,VMD)提取宽频信号中多种模态分量的波形信息以及对应的中心频率;其次,考虑到实际电力系统中基波频率的动态变化,利用离散傅里叶变换(discrete fourier transform,DFT)跟踪基波分量的实际频率,并以此修正基波中心频率;最后,将中心频率、模态分量波形等信息代入动态相量模型,实现宽频信号参数估计。在频率线性变化、频率动态调制、噪声等工况下验证算法性能,仿真结果表明,所提算法能更准确地获取宽频信号的参数信息,保持总相量误差(total vector error,TVE)低于3%。 展开更多
关键词 宽频振荡 参数估计 变分模态分解(VMD) 基波动态
在线阅读 下载PDF
基于逐次变分模态分解的液压轴向柱塞泵故障特征提取方法
5
作者 马景涛 汤胜楠 +2 位作者 朱勇 周涛 郑智剑 《液压与气动》 北大核心 2025年第3期100-110,共11页
当液压轴向柱塞泵关键摩擦副出现故障时,其振动信号会出现调制现象,振动信号中的故障调制特征与特定的故障类型形成对应关系,通过信号分解可以从振动信号中提取出故障特征,进而用于故障诊断。以液压轴向柱塞泵为研究对象,利用变分模态... 当液压轴向柱塞泵关键摩擦副出现故障时,其振动信号会出现调制现象,振动信号中的故障调制特征与特定的故障类型形成对应关系,通过信号分解可以从振动信号中提取出故障特征,进而用于故障诊断。以液压轴向柱塞泵为研究对象,利用变分模态分解和逐次变分模态分解分别对不同的仿真信号在含噪的情况下进行分解重构,综合对比了两种算法在分解性能方面的差异;最后将两种算法用于实测振动信号的故障特征提取中。结果表明:两种算法均适用于液压轴向柱塞泵的故障特征提取;逐次变分模态分解能更精确地重构出与柱塞泵故障高度相关的有效分量;变分模态分解提取到的有效分量幅值衰减更小,对微弱故障特征更加敏感。 展开更多
关键词 液压轴向柱塞泵 故障诊断 故障特征提取 变分模态分解 逐次变分模态分解
在线阅读 下载PDF
基于动态模态分解的弹道目标平动补偿与微动特征提取方法
6
作者 李开明 代肖楠 +2 位作者 张袁鹏 姚佳文 罗迎 《系统工程与电子技术》 北大核心 2025年第2期451-462,共12页
针对弹道目标平动导致微动特征难以准确提取的问题,提出一种基于动态模态分解(dynamic mode decomposition, DMD)的弹道目标平动补偿与微动特征提取方法。首先,在弹道目标微动回波建模的基础上,对目标的慢时间-距离像序列进行微多普勒(m... 针对弹道目标平动导致微动特征难以准确提取的问题,提出一种基于动态模态分解(dynamic mode decomposition, DMD)的弹道目标平动补偿与微动特征提取方法。首先,在弹道目标微动回波建模的基础上,对目标的慢时间-距离像序列进行微多普勒(micro-Doppler, m-D)特征曲线分离;其次,将分离后的数据向量移位堆叠构建为增广数据矩阵,并对其进行DMD;然后,利用分解后的模态幅值对各模态进行排序,结合损失函数等信息选取主要模态;同时,利用主要模态中的零频率模态完成弹道目标的平动补偿,从其他主要模态中提取出自旋频率和锥旋频率等微动特征信息;最后,对基于DMD的弹道目标平动补偿与微动特征提取方法进行性能分析与对比实验,验证了所提方法的可行性和稳健性。 展开更多
关键词 动态模态分解 弹道目标 微多普勒 平动补偿 特征提取
在线阅读 下载PDF
基于变分模态分解的地面磁共振谐波消噪方法
7
作者 王琦 刘钊闻 +2 位作者 杜海龙 玄玉波 刁庶 《吉林大学学报(理学版)》 北大核心 2025年第2期559-566,共8页
针对地面磁共振信号非常弱,极易受电磁噪声干扰的问题,提出一种基于变分模态分解的地面磁共振谐波消噪方法.该方法采用基于改进变分模态分解的工频谐波消除方式,并根据频谱分析设定模态分量数与初始中心频率,解决了常规谐波建模消噪方... 针对地面磁共振信号非常弱,极易受电磁噪声干扰的问题,提出一种基于变分模态分解的地面磁共振谐波消噪方法.该方法采用基于改进变分模态分解的工频谐波消除方式,并根据频谱分析设定模态分量数与初始中心频率,解决了常规谐波建模消噪方法仅能处理单次采集数据而导致的运算效率慢等问题.实验结果表明,该方法在多基频或基频随时间变化等复杂噪声场景中,得到了良好的谐波分量估计效果,并可快速、有效地消除工频谐波干扰,大幅度提升了地面磁共振探测数据信噪比. 展开更多
关键词 变分模态分解 地面磁共振 谐波干扰 基频变化
在线阅读 下载PDF
基于模态分解和多模型融合的IES多元负荷预测
8
作者 李大华 赵志成 +1 位作者 田禾 高强 《电子测量技术》 北大核心 2025年第17期81-93,共13页
针对综合能源系统中多元负荷的随机性和高波动性所带来的挑战,现有的负荷预测方法通常难以实现高精度和稳定的预测效果。为解决这一问题,提出一种基于模态分解和多模型融合的IES短期负荷预测方法。首先,利用最大互信息系数对输入特征进... 针对综合能源系统中多元负荷的随机性和高波动性所带来的挑战,现有的负荷预测方法通常难以实现高精度和稳定的预测效果。为解决这一问题,提出一种基于模态分解和多模型融合的IES短期负荷预测方法。首先,利用最大互信息系数对输入特征进行筛选,旨在有效识别与负荷变化相关的关键因素;其次,将样本熵结合互信息为适应度函数,采用指数三角优化算法获得VMD的最优参数组合,从而实现对IES负荷的有效分解,得到多个本征模态函数;接着,采用排列熵对分解结果进行筛选,提取出反映负荷变化特征的低频和高频分量;最后,采用BiLSTM网络对低频分量进行预测,并通过BiTCN-LPTransformer-BiGRU模型对高频分量的预测,将各分量的预测结果叠加得到最终预测结果。通过对实际负荷数据验证,以春季电负荷为例,该模型的RMSE、R2、MAPE分别为118.394kW、0.991和0.351%,相较于传统模型,显著提高了预测精度,验证所提方法的有效性。 展开更多
关键词 综合能源系统 模态分解 最大互信息系数 指数三角优化算法 负荷预测
在线阅读 下载PDF
基于改进变分模态分解的飞轮储能辅助火电二次调频控制策略
9
作者 王玮 赵俊杰 +1 位作者 高嵩 房方 《动力工程学报》 北大核心 2025年第7期1052-1062,共11页
飞轮储能辅助调频是改善火电机组调频性能和运行稳定性的有效方案之一。为提升飞轮储能参与二次调频的综合性能,提出了一种基于变模态分解改进鲸群优化算法的飞轮辅助火电机组二次调频协同控制策略。首先,基于飞轮储能单元机侧和网侧控... 飞轮储能辅助调频是改善火电机组调频性能和运行稳定性的有效方案之一。为提升飞轮储能参与二次调频的综合性能,提出了一种基于变模态分解改进鲸群优化算法的飞轮辅助火电机组二次调频协同控制策略。首先,基于飞轮储能单元机侧和网侧控制机理,建立了适配1 000 MW超超临界火电机组的飞轮储能阵列控制系统模型,以及飞轮储能系统与超超临界机组协同控制的二次调频模型;其次,提出了基于鲸群优化算法的改进变模态分解方法,实现了火电机组和飞轮系统响应自动发电控制(AGC)指令的优化分配;最后,针对分配结果设计了一种提升飞轮系统荷电状态(SOC)充放电裕度的控制策略,发展了综合考虑调频性能和飞轮可靠性的飞轮辅助火电二次调频控制策略。结果表明:所提控制策略在减弱飞轮储能SOC和火电机组主蒸汽压力波动的同时,可使机组的AGC性能考核指标提升16.72%。 展开更多
关键词 火电机组 飞轮储能 二次调频 AGC指令 鲸鱼优化算法 变分模态分解
在线阅读 下载PDF
变分模态分解融合特征熵的直流微电网电弧检测
10
作者 李欣 李奎秀 +2 位作者 李新宇 陈德秋 郭攀锋 《电力系统及其自动化学报》 北大核心 2025年第3期47-58,共12页
针对直流微电网不同单元发生的串联电弧故障和易被误判问题,提出一种变分模态分解融合多特征熵值的故障电弧检测方法。首先,通过麻雀搜索算法优化变分模态分解参数,将各单元电压和电流信号分解为若干本征模态函数,并结合多尺度排列熵的... 针对直流微电网不同单元发生的串联电弧故障和易被误判问题,提出一种变分模态分解融合多特征熵值的故障电弧检测方法。首先,通过麻雀搜索算法优化变分模态分解参数,将各单元电压和电流信号分解为若干本征模态函数,并结合多尺度排列熵的绝对差值确定故障特征模态分量;其次,融合能量熵、近似熵、样本熵、模糊熵将选定的模态函数量化为熵值,并据此设定检测阈值;最后,通过对比实验和抗干扰实验对所提方法进行验证。结果表明该方法电弧识别率达到98%以上且具备良好的抗干扰性。 展开更多
关键词 直流微电网 串联电弧故障 变分模态分解 对比试验 电弧识别率
在线阅读 下载PDF
基于变分模态分解的深挖方膨胀土渠道边坡变形预测
11
作者 胡江 李星 马福恒 《工程地质学报》 北大核心 2025年第4期1540-1552,共13页
膨胀土渠道边坡运行期变形受降水、地下水位以及蒸发等干湿循环作用的影响显著,变形预测可为渠坡稳定性评判提供依据。以某调水工程的一深挖方膨胀土渠段为例开展研究,该段渠坡地下水位较高,开挖完成3 a后渠坡的刚性支护结构出现了损坏... 膨胀土渠道边坡运行期变形受降水、地下水位以及蒸发等干湿循环作用的影响显著,变形预测可为渠坡稳定性评判提供依据。以某调水工程的一深挖方膨胀土渠段为例开展研究,该段渠坡地下水位较高,开挖完成3 a后渠坡的刚性支护结构出现了损坏,变形超设计警戒值且还在持续发展。基于工程地质、水文地质与现场检查数据,分析渠坡变形特征与影响因素,发展位移统计模型;融合VMD和LSSVM算法,构建深挖方膨胀土渠道边坡垂直位移预测的VMD-LSSVM模型。结果表明,影响因素与垂直位移周期性部分的灰色关联度均大于0.6,呈较好相关性,其中地下水位、有效降水量、气温为负相关;渠道水位为正相关。VMD算法能较好地分解趋势性、周期性和波动性位移,同时能将影响因素分解为周期性和波动性成分,且能识别影响因素的局部波动。以时间作为趋势性位移的输入因子,以影响因素的周期性和波动性成分作为周期性和波动性位移的输入因子,进行训练和预测,叠加得到累计位移输出值。运行初期渠坡垂直位移的时效显著,VMD-LSSVM模型预测精度明显优于统计模型和直接将影响因素作为输入因子的LSSVM模型。 展开更多
关键词 膨胀土边坡 位移预测 地下水 变分模态分解 支持向量机
在线阅读 下载PDF
考虑不确定变量变分模态分解及绿证-碳联合交易的综合能源系统经济优化调度
12
作者 刘晓军 熊健 +2 位作者 王艺博 刘闯 徐粤洋 《电工技术学报》 北大核心 2025年第13期4276-4291,共16页
为了挖掘热电联产、储能设备等多元设备的差异化响应能力以实现综合能源系统(IES)中不确定变量的有效应对,该文提出一种考虑不确定变量变分模态分解(VMD)和绿证-碳联合交易的综合能源系统经济优化调度方法。首先,在IES运行框架下,提出... 为了挖掘热电联产、储能设备等多元设备的差异化响应能力以实现综合能源系统(IES)中不确定变量的有效应对,该文提出一种考虑不确定变量变分模态分解(VMD)和绿证-碳联合交易的综合能源系统经济优化调度方法。首先,在IES运行框架下,提出了面向电/热/气负荷等不确定变量VMD低/中/高频分量的设备差异化响应方法流程;其次,在绿证和碳交易机制基础上,考虑绿证碳减排机理,构建了绿证-碳联合交易机制;再次,考虑IES内多元设备的差异化幅/频响应能力,建立了一种以综合成本最小为目标的IES经济优化调度模型,并将模型依据VMD低/中/高频分量顺序进行逐层传递、迭代求解;最后,算例结果表明所提模型能够较好地提高IES的新能源消纳能力和碳减排能力,验证了模型的合理性与有效性。 展开更多
关键词 变分模态分解 绿证交易机制 碳交易机制 风电消纳 综合能源系统
在线阅读 下载PDF
变分模态分解和自适应稀疏自编码器的故障诊断模型
13
作者 吴亚丽 冯梦琦 +2 位作者 王君虎 董昂 杨延西 《机械科学与技术》 北大核心 2025年第9期1603-1611,共9页
针对旋转机械滚动轴承故障诊断中变分模态分解的参数选择和稀疏自编码器网络结构难以确定的问题,该文提出了一种粒子群算法优化的变分模态分解与稀疏自编码器相结合的故障诊断模型。首先计算包络熵确定变分模态算法的分解层数和模态分量... 针对旋转机械滚动轴承故障诊断中变分模态分解的参数选择和稀疏自编码器网络结构难以确定的问题,该文提出了一种粒子群算法优化的变分模态分解与稀疏自编码器相结合的故障诊断模型。首先计算包络熵确定变分模态算法的分解层数和模态分量,通过信号分解和降噪从而实现最佳分量的筛选。接着计算最佳分量的包络谱并将其作为稀疏自编码器的输入,引入粒子群算法优化稀疏自编码器的网络结构,获得自动提取振动数据的最优特征表示能力,在满足模型较优的特征学习能力的前提下极大地增强了模型的适应性。对凯斯西储大学轴承和变速轴承数据集的故障类型识别的仿真结果表明,该文所提方法拥有较强自适应性和较优的准确率。 展开更多
关键词 变分模态分解 包络熵 稀疏自编码器 粒子群算法 故障诊断
在线阅读 下载PDF
基于射流瞬态流速变分模态分解法的纬纱波动幅度预测
14
作者 沈敏 欧阳灿 +4 位作者 熊小双 王真 杨学正 吕永法 余联庆 《纺织学报》 北大核心 2025年第1期187-196,共10页
为降低柔性纬纱在引纬过程中因辅助喷嘴高速气流曳力而产生过大形变,使用基于分解层数优化的变分模态分解(VMD)方法,获得辅助喷嘴射流瞬时速度信号的本征模态分量(IMF),利用IMF预测柔性纬纱运动形变,降低断纬率。首先采用大涡模拟(LES)... 为降低柔性纬纱在引纬过程中因辅助喷嘴高速气流曳力而产生过大形变,使用基于分解层数优化的变分模态分解(VMD)方法,获得辅助喷嘴射流瞬时速度信号的本征模态分量(IMF),利用IMF预测柔性纬纱运动形变,降低断纬率。首先采用大涡模拟(LES)方法数值模拟了圆锥形、圆弧形及圆柱形入口辅助喷嘴射流的瞬态流场分布,监测了辅助喷嘴射流在势核与势尾区域瞬态速度信号;继而,通过VMD方法,得到监测点速度的本征模态分量,讨论了各本征模态信号波动的方差,最后通过双向流固耦合法得到纬纱的径向偏移来验证预测的准确性。结果发现:3种辅助喷嘴势核与势尾处主模态IMF1速度幅值稳定,为辅助喷嘴的主速度模态;次模态IMF2波动大且与纬纱径向偏移具有同步性,可用于预测纬纱波动;第3模态IMF3为高频振荡信号,可视为流场高频噪声信号去除。 展开更多
关键词 喷气织机 辅助喷嘴射流 瞬态流场 大涡模拟 变分模态分解 纬纱波动
在线阅读 下载PDF
基于逐次变分模态分解和小波阈值的车载雷达抗干扰方法
15
作者 李家强 刘浩波 +2 位作者 汪星宇 姚昌华 陈金立 《雷达科学与技术》 北大核心 2025年第4期375-386,共12页
车载毫米波雷达间交叉干扰直接影响雷达的目标探测精度和驾驶安全,针对此问题本文提出一种基于逐次变分模态分解(Successive Variational Mode Decomposition,SVMD)结合小波阈值的干扰抑制方法。首先通过PID搜索算法(PID Search Algorit... 车载毫米波雷达间交叉干扰直接影响雷达的目标探测精度和驾驶安全,针对此问题本文提出一种基于逐次变分模态分解(Successive Variational Mode Decomposition,SVMD)结合小波阈值的干扰抑制方法。首先通过PID搜索算法(PID Search Algorithm,PSA)对SVMD的最大正则化参数进行优化选择,然后利用SVMD将受扰雷达信号分解为一组本征模态函数(Intrinsic Mode Function,IMF)。接着对每个IMF依次进行小波阈值化处理以滤除各模态中的干扰,最后将各模态叠加完成信号重构,获得干扰抑制后的毫米波雷达信号。本文在PSA中加入陷阱避免算子以增加探索范围和避免局部最优,在小波阈值处理中改进了硬阈值函数以解决函数连续性差的问题。多目标场景下的仿真实验和实测实验结果表明,该方法干扰抑制效果显著,能够提高雷达的检测性能。 展开更多
关键词 毫米波雷达 逐次变分模态分解 PID搜索算法 小波阈值
在线阅读 下载PDF
基于二维聚合经验模态分解的SAR图像目标识别方法
16
作者 肜瑶 张洋洋 《火力与指挥控制》 北大核心 2025年第6期200-205,共6页
合成孔径雷达图像特征有效性直接决定了后续目标识别性能。针对SAR特征提取和目标识别问题,采用二维聚合经验模态分解获得多层次二维固态模函数并据此设计识别方法。BEEMD对传统经验模态函数进行优化,其分解得到的BIMF可以更为稳健、有... 合成孔径雷达图像特征有效性直接决定了后续目标识别性能。针对SAR特征提取和目标识别问题,采用二维聚合经验模态分解获得多层次二维固态模函数并据此设计识别方法。BEEMD对传统经验模态函数进行优化,其分解得到的BIMF可以更为稳健、有效地反映目标特性。为了充分利用分解得到的多层次BIMF,基于联合稀疏表示对它们进行统一表征从而考察其内在相关性。根据重构结果,在各层次BIMF上计算重构误差之和进行决策。采用MSTAR数据集设置实验条件对方法进行测试。综合不同条件下的结果表明,提出方法相比现有几类SAR目标识别方法具有更强的有效性。 展开更多
关键词 合成孔径雷达 目标识别 二维聚合经验模态分解 联合稀疏表示
在线阅读 下载PDF
基于模态分解和误差修正的短期电力负荷预测
17
作者 鄢化彪 李东丽 +2 位作者 黄绿娥 张航菘 姚龙龙 《电子测量技术》 北大核心 2025年第5期92-101,共10页
针对电力负荷非线性、高波动性和强随机性等特性导致无法充分提取时序特征引起预测误差较大的问题,提出了基于改进的自适应白噪声完全集合经验模态分解和误差修正的双向时间卷积网络-双向长短期记忆网络短期电力负荷预测方法。先由最大... 针对电力负荷非线性、高波动性和强随机性等特性导致无法充分提取时序特征引起预测误差较大的问题,提出了基于改进的自适应白噪声完全集合经验模态分解和误差修正的双向时间卷积网络-双向长短期记忆网络短期电力负荷预测方法。先由最大信息系数筛选出与负荷高度相关的特征集,以削弱特征冗余;通过改进的自适应白噪声完全集合经验模态分解将高波动性的负荷分解为频率各异的本征模态分量和残差,以降低非平稳性;引入样本熵将复杂度相近的分量重构成新子序列,以降低计算量;然后,结合并行双向时间卷积网络提取不同尺度的特征,利用双向长短期记忆网络对负荷序列初步预测,使用麻雀优化算法对神经网络超参数调优;最后,误差序列通过误差修正模块对初始预测值进行修正。经实验验证,与其他预测模型相比,RMSE最多降低51.42%,最少降低34.26%,验证了模型的准确性和有效性。 展开更多
关键词 电力负荷 短期预测 自适应经验模态分解 样本熵 双向时间卷积网络 双向长短期记忆 麻雀搜索算法
在线阅读 下载PDF
基于改进集合经验模态分解和强化视觉Transformer模型的风电机组故障预警
18
作者 许伯强 王彪 +1 位作者 孙丽玲 尹彦博 《电工技术学报》 北大核心 2025年第20期6537-6551,共15页
现有基于数据采集与监视控制系统(SCADA)数据的风电机组故障预警方法往往只针对风电机组的某一位置或者某一类型故障,无法对风电机组整体进行较为全面的预警。针对这一问题,该文提出了基于改进集合经验模态分解(EEMD)和强化的视觉转换器... 现有基于数据采集与监视控制系统(SCADA)数据的风电机组故障预警方法往往只针对风电机组的某一位置或者某一类型故障,无法对风电机组整体进行较为全面的预警。针对这一问题,该文提出了基于改进集合经验模态分解(EEMD)和强化的视觉转换器(ViT)模型的风电机组故障预警方法。首先,对EEMD算法进行改进,分解得到的数据包含不同时间尺度的特征信息,且使得分解过程中不发生信息泄露。采用改进的EEMD算法解构风电机组SCADA多维数据之后,构建反映风电机组实时状态的特征矩阵。然后,结合非对称卷积模块对ViT模型进行强化,并加入可变形注意力模块,在降低计算复杂度的同时使得模型可以充分捕捉不同维度与时间尺度的风电机组特征。最后,将特征矩阵输入强化的ViT模型以获得预测结果,与实际值对比得到残差矩阵,依此进行风电机组故障的预警。经风电机组实际运行SCADA数据验证,该文提出的风电机组故障预警方法准确有效,并可通过残差矩阵进一步辨识风电机组发生的故障类型。 展开更多
关键词 风电机组 数据采集与监视控制系统(SCADA)数据 故障预警 改进集合经验模态分解(EEMD) 强化ViT模型
在线阅读 下载PDF
基于模态分解和时间序列的锂电池健康状态估计
19
作者 成燕 郑林弘 刘江 《电源学报》 北大核心 2025年第5期241-250,共10页
针对锂离子电池健康状态SOH(state-of-health)估计未考虑容量再生现象导致预测结果不准确的问题,提出1种基于多时间尺度集合经验模态分解融合时间序列映射输入健康状态非线性关系方法。通过集合经验模态分解EEMD(ensemble empirical mod... 针对锂离子电池健康状态SOH(state-of-health)估计未考虑容量再生现象导致预测结果不准确的问题,提出1种基于多时间尺度集合经验模态分解融合时间序列映射输入健康状态非线性关系方法。通过集合经验模态分解EEMD(ensemble empirical mode decomposition)算法将考虑容量再生现象的电池容量信息分解为高频主趋势信号及低频余量信号,由2类信号预测结果完成对锂离子电池SOH的估算。结果表明,该方法可以捕获容量再生现象提高估算准确度,实现对电池容量退化的拟合,且受不同预测起点影响小,预测的最大均方根差RMSE(root mean square error)和平均绝对误差MAE(mean absolute error)不超过1.5%,最大平均绝对百分误差MAPE(mean absolute percentage error)不超过2%。 展开更多
关键词 锂离子电池 健康状态 容量再生 集合经验模态分解 时间序列
在线阅读 下载PDF
光伏新能源电能信号游程域模态分解理论与特征提取
20
作者 王学伟 杨江宁 《电力自动化设备》 北大核心 2025年第1期92-98,共7页
高比例光伏新能源接入下的电能信号呈现出强随机、快时变、大波动特性,常导致电能表电能计量严重超差,影响电能交易的公正合理性。针对新能源电能信号敏感特征不清楚、对电能表电能计量影响不明确的问题,建立了游程域映射理论,解决了电... 高比例光伏新能源接入下的电能信号呈现出强随机、快时变、大波动特性,常导致电能表电能计量严重超差,影响电能交易的公正合理性。针对新能源电能信号敏感特征不清楚、对电能表电能计量影响不明确的问题,建立了游程域映射理论,解决了电能信号在游程域的表征问题;提出了游程域模态分解(R-EMD)方法,基于游程完成电流幅度在长持续时间下局部区间的自适应模态分解,得出光伏新能源电能信号的2个全局重要特征;构建了游程域特征参量与特征函数,并提取得到光伏新能源电能信号的4个游程域敏感特征;通过实验验证了游程域敏感特征对电能计量的影响。 展开更多
关键词 光伏新能源 电能计量 电能表误差 模态分解 特征提取
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部