在实际应用问题中,由于客观世界物质的多样性、模糊性和复杂性,经常会遇到大量未知样本类别信息的数据挖掘问题,而传统方法往往都依赖于已知样本类别信息才能对数据进行有效挖掘,对于未知模式类别信息的多类数据目前还没有有效的处理方...在实际应用问题中,由于客观世界物质的多样性、模糊性和复杂性,经常会遇到大量未知样本类别信息的数据挖掘问题,而传统方法往往都依赖于已知样本类别信息才能对数据进行有效挖掘,对于未知模式类别信息的多类数据目前还没有有效的处理方法.针对未知类别信息的多类样本挖掘问题,提出了一种基于主动学习的模式类别挖掘模型(pattern class mining model based on active learning,PM_AL)来解决未知类别信息的模式类别挖掘问题.该模型通过衡量已得到的模式类别与未标记样本间的关系,引入样本差异度的方法来抽取最有价值样本,通过主动学习方式以较小的标记代价快速挖掘无标记样本所蕴含的可能模式类别,从而有助于将无类别标记的多分类问题转化成有类别标记的多分类问题.实验结果表明,PM_AL算法能够以较小的标记代价处理无类别信息的模式类别挖掘问题.展开更多
Noise-assisted multivariate empirical mode decomposition(NA-MEMD) is suitable to analyze multichannel electroencephalography(EEG) signals of non-stationarity and non-linearity natures due to the fact that it can provi...Noise-assisted multivariate empirical mode decomposition(NA-MEMD) is suitable to analyze multichannel electroencephalography(EEG) signals of non-stationarity and non-linearity natures due to the fact that it can provide a highly localized time-frequency representation.For a finite set of multivariate intrinsic mode functions(IMFs) decomposed by NA-MEMD,it still raises the question on how to identify IMFs that contain the information of inertest in an efficient way,and conventional approaches address it by use of prior knowledge.In this work,a novel identification method of relevant IMFs without prior information was proposed based on NA-MEMD and Jensen-Shannon distance(JSD) measure.A criterion of effective factor based on JSD was applied to select significant IMF scales.At each decomposition scale,three kinds of JSDs associated with the effective factor were evaluated:between IMF components from data and themselves,between IMF components from noise and themselves,and between IMF components from data and noise.The efficacy of the proposed method has been demonstrated by both computer simulations and motor imagery EEG data from BCI competition IV datasets.展开更多
文摘在实际应用问题中,由于客观世界物质的多样性、模糊性和复杂性,经常会遇到大量未知样本类别信息的数据挖掘问题,而传统方法往往都依赖于已知样本类别信息才能对数据进行有效挖掘,对于未知模式类别信息的多类数据目前还没有有效的处理方法.针对未知类别信息的多类样本挖掘问题,提出了一种基于主动学习的模式类别挖掘模型(pattern class mining model based on active learning,PM_AL)来解决未知类别信息的模式类别挖掘问题.该模型通过衡量已得到的模式类别与未标记样本间的关系,引入样本差异度的方法来抽取最有价值样本,通过主动学习方式以较小的标记代价快速挖掘无标记样本所蕴含的可能模式类别,从而有助于将无类别标记的多分类问题转化成有类别标记的多分类问题.实验结果表明,PM_AL算法能够以较小的标记代价处理无类别信息的模式类别挖掘问题.
基金Projects(61201302,61372023,61671197)supported by the National Natural Science Foundation of ChinaProject(201308330297)supported by the State Scholarship Fund of ChinaProject(LY15F010009)supported by Zhejiang Provincial Natural Science Foundation,China
文摘Noise-assisted multivariate empirical mode decomposition(NA-MEMD) is suitable to analyze multichannel electroencephalography(EEG) signals of non-stationarity and non-linearity natures due to the fact that it can provide a highly localized time-frequency representation.For a finite set of multivariate intrinsic mode functions(IMFs) decomposed by NA-MEMD,it still raises the question on how to identify IMFs that contain the information of inertest in an efficient way,and conventional approaches address it by use of prior knowledge.In this work,a novel identification method of relevant IMFs without prior information was proposed based on NA-MEMD and Jensen-Shannon distance(JSD) measure.A criterion of effective factor based on JSD was applied to select significant IMF scales.At each decomposition scale,three kinds of JSDs associated with the effective factor were evaluated:between IMF components from data and themselves,between IMF components from noise and themselves,and between IMF components from data and noise.The efficacy of the proposed method has been demonstrated by both computer simulations and motor imagery EEG data from BCI competition IV datasets.