期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
模型集群分析-随机森林方法在烟叶分类中的应用 被引量:6
1
作者 谭观萍 宾俊 +4 位作者 范伟 张发明 李海平 王承伟 周冀衡 《江西农业学报》 CAS 2017年第1期69-74,共6页
为了解决烟叶外观质量检验和烟叶品质等级评估中主观因素影响过大的问题,首次采用模型集群分析-随机森林方法(MPA-RF)结合近红外光谱建立的烟叶采收成熟度和烤后烟叶等级划分判别模型对烟叶进行了品质分类。结果表明:MPA-RF模型对采收... 为了解决烟叶外观质量检验和烟叶品质等级评估中主观因素影响过大的问题,首次采用模型集群分析-随机森林方法(MPA-RF)结合近红外光谱建立的烟叶采收成熟度和烤后烟叶等级划分判别模型对烟叶进行了品质分类。结果表明:MPA-RF模型对采收成熟度烟叶样本(数据集A)和不同等级烟叶样本(数据集B)的训练集分类精度分别为96.67%、99.02%,预测模型分类精度分别为100%、96.15%;MPA-RF模型对烟叶的分类准确率明显高于常用的PCA、SVM和RF分类方法。 展开更多
关键词 近红外光谱 烟叶分类 模型集群分析-随机森林方法
在线阅读 下载PDF
近红外光谱与模型集群分析测定毛涤混纺织物成分含量 被引量:11
2
作者 罗峻 吴淑焕 +3 位作者 聂凤明 许敏 范伟 梁逸曾 《中国测试》 CAS 北大核心 2016年第8期44-47,共4页
将近红外光谱法和模型集群分析方法应用于毛涤混纺织物成分含量的快速无损测定。以近红外测量方法采集93个毛涤混纺织物的光谱信号,利用光谱预处理消除信号漂移的影响,在模型集群分析基础上,剔除异常样本,筛选出30个关键波长,采用偏最... 将近红外光谱法和模型集群分析方法应用于毛涤混纺织物成分含量的快速无损测定。以近红外测量方法采集93个毛涤混纺织物的光谱信号,利用光谱预处理消除信号漂移的影响,在模型集群分析基础上,剔除异常样本,筛选出30个关键波长,采用偏最小二乘法(PLS)建立涤纶含量的预测模型。所建立模型的训练集相关系数r2为0.9827、交互验证均方误差(RMSECV)为3.26、预测均方根误差(RMSEP)为3.34,预测结果令人满意,适合于毛涤混纺织物中涤纶含量的快速、无损检测。 展开更多
关键词 近红外光谱 模型集群分析 毛涤混纺织物 偏最小二乘法
在线阅读 下载PDF
模型集群分析策略联合ELM的土壤重金属Pb含量预测 被引量:2
3
作者 肖烨辉 宋妮迪 +2 位作者 孟盼盼 王培俊 范胜龙 《自然资源遥感》 CSCD 北大核心 2021年第4期143-152,共10页
为探寻区域土壤重金属含量最佳反演模型,以龙海市为研究区,对土壤原始光谱数据分别进行SG平滑、小波变换、高斯滤波和多元散射校正4种光谱预处理,运用基于模型集群分析(model population analysis,MPA)策略开发的波长选择算法:竞争适应... 为探寻区域土壤重金属含量最佳反演模型,以龙海市为研究区,对土壤原始光谱数据分别进行SG平滑、小波变换、高斯滤波和多元散射校正4种光谱预处理,运用基于模型集群分析(model population analysis,MPA)策略开发的波长选择算法:竞争适应性重加权采样算法(competitive adaptive reweighted sampling,CARS)、变量空间迭代收缩算法(variable iterative space shrinkage approach,VISSA)、迭代变量子集优化算法(iteratively variable subset optimization,IVSO)和区间组合优化算法(interval combination optimization,ICO)剔除干扰与无信息波长变量,采用线性模型偏最小二乘回归(partial least squares regression,PLSR)、非线性模型支持向量机(support vector machine,SVM)及神经网络模型极限学习机(extreme learning machine,ELM)进行土壤重金属铅(Pb)含量回归预测。结果表明:经过多种预处理方法建立的Pb含量反演模型中,基于小波变换第七层重构后的光谱数据构建的模型预测精度最优,其验证集R^(2)=0.736,RMSE=5.426,RPD=1.976,RPIQ=2.560。基于MPA策略开发的CARS,VISSA,IVSO和ICO都能显著提升模型解释性与泛化性能,并且提高建模效率。3种回归模型总体的预测表现排序:ELM>PLSR>SVM。其中ICO-ELM预测精度最高,其验证集R^(2)=0.863,RMSE=3.953,RPD=2.712,RPIQ=3.514。所建最优模型可为区域土地质量和生态指标快速准确监测提供新的理论参考。 展开更多
关键词 模型集群分析策略 小波变换 区间组合优化 极限学习机
在线阅读 下载PDF
近红外光谱信息筛选在玛咖产地鉴别中的应用 被引量:7
4
作者 王元忠 赵艳丽 +1 位作者 张霁 金航 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2016年第2期394-400,共7页
食药植物玛咖富含多种营养成分,极具药用价值。采用近红外漫反射光谱,对采自秘鲁及云南共139份玛咖样品进行产地鉴别。采用多元信号校正结合二阶导数和Norris平滑预处理光谱,利用光谱标准偏差初步选择光谱波段(7 500~4 061cm^(-1)),结... 食药植物玛咖富含多种营养成分,极具药用价值。采用近红外漫反射光谱,对采自秘鲁及云南共139份玛咖样品进行产地鉴别。采用多元信号校正结合二阶导数和Norris平滑预处理光谱,利用光谱标准偏差初步选择光谱波段(7 500~4 061cm^(-1)),结合主成分-马氏距离(principal component analysis-mahalanobis distance,PCA-MD)筛选出适宜的主成分数为5。基于所筛选的光谱波段及主成分数,利用"模群迭代奇异样本诊断"方法剔除2个异常样品后,分别采用竞争自适应重加权法(competitive adaptive reweighted sampling,CARS)、蒙特卡洛-无信息变量消除法(monte carlo-uninformative variable elimination,MC-UVE)、遗传算法(genetic algorithm,GA)和子窗口重排(subwindow permutation analysis,SPA)四种方法筛选光谱变量信息,利用模型集群分析(model population analysis,MPA)思想对所筛选的光谱变量信息进行评价。结果显示,RMSECV(SPA)>RMSECV(CARS)>RMSECV(MC-UVE)>RMSECV(GA),分别为2.14,2.05,2.02,1.98,光谱变量数分别为250,240,250和70。采用偏最小二乘判别分析法(partial least squares discriminant analysis,PLS-DA)对四种方法筛选的光谱变量建立判别模型,随机选择97份样品作为建模集,其余40份样品作为验证集。通过R2,RMSEC和RMSEP分析可知,R2:GA>MC-UVE>CARS>SPA,RMSEC和RMSEP:GA<MC-UVE<CARS<SPA,且GA,MC-UVE,CARS和SPA四种方法筛选的光谱信息所建立的产地判别模型预测正确率分别为95.0%,92.5%,90.0%和85.0%。四种方法筛选的光谱信息所建立的产地判别模型均具有较好的预测性能,其中GA法所筛选的光谱信息建立的判别模型更准确。该方法的建立旨在为中药材鉴别和品质评价奠定基础。 展开更多
关键词 玛咖 近红外光谱 鉴别 光谱信息筛选 模型集群分析
在线阅读 下载PDF
基于CC-MPA特征优选算法的小麦条锈病遥感监测 被引量:3
5
作者 竞霞 闫菊梅 +2 位作者 邹琴 李冰玉 杜凯奇 《农业机械学报》 EI CAS CSCD 北大核心 2022年第9期217-225,304,共10页
为了弥补一次性建模分析的缺陷,提高小麦条锈病遥感监测模型的运行效率和精度,根据模型集群分析(Model population analysis,MPA)算法的特点,综合利用光谱区间选择算法和光谱点选择算法的优势,提出了一种联合相关系数(Correlation coeff... 为了弥补一次性建模分析的缺陷,提高小麦条锈病遥感监测模型的运行效率和精度,根据模型集群分析(Model population analysis,MPA)算法的特点,综合利用光谱区间选择算法和光谱点选择算法的优势,提出了一种联合相关系数(Correlation coefficient,CC)与MPA的特征变量优选算法。在利用CC算法对全波段光谱进行特征变量选择的基础上,分别利用基于MPA思想开发的竞争性自适应重加权采样法(Competitive adaptive reweighted sampling,CARS)和变量组合集群分析法(Variable combination population analysis,VCPA)进一步优选对小麦条锈病敏感的特征变量,并利用偏最小二乘回归(Partial least squares regression,PLSR)算法构建了小麦条锈病遥感监测的CC-CARS和CC-VCPA模型。结果表明:联合CC MPA算法优选的特征变量构建的CC-CARS和CC-VCPA模型精度均高于CC、CARS和VCPA算法。3组验证集样本中,CC-CARS模型预测病情指数(Disease index,DI)与实测DI间的R^(2)_(V)较CC模型和CARS模型至少分别提高了6.78%和6.66%,RMSEV至少分别降低了15.31%和10.98%,RPD至少分别提高了18.08%和12.34%。CC VCPA模型预测DI与实测DI间的R^(2)_(V)较CC模型和VCPA模型至少分别提高了9.58%和0.73%,RMSEV至少分别降低了20.78%和3.86%,RPD至少分别提高了26.22%和4.02%。基于CC-MPA的光谱特征优选算法是一种有效的特征选择方法,尤其是利用CC-VCPA方法选择的特征变量数更少,模型预测效果更好,研究结果对光谱特征优选及提高作物病害遥感监测精度具有重要的参考价值。 展开更多
关键词 小麦条锈病 遥感监测 特征优选 模型集群分析 变量组合分析
在线阅读 下载PDF
基于X射线荧光光谱与多特征串联策略的土壤重金属含量预测 被引量:5
6
作者 任顺 张雄 +2 位作者 任东 杨信廷 张力 《分析测试学报》 CAS CSCD 北大核心 2020年第7期829-837,共9页
针对土壤重金属快速检测需求,基于模型集群分析方法进行特征波长变量选择,提出了利用X射线荧光光谱技术检测农田土壤中重金属含量的方法。采集91个配制土壤样品的X射线荧光光谱值,用于构建土壤重金属检测模型。通过多特征串联方法提取... 针对土壤重金属快速检测需求,基于模型集群分析方法进行特征波长变量选择,提出了利用X射线荧光光谱技术检测农田土壤中重金属含量的方法。采集91个配制土壤样品的X射线荧光光谱值,用于构建土壤重金属检测模型。通过多特征串联方法提取特征波长变量,首先采用区间组合优化算法(ICO)粗选波长,然后采用竞争适应性重加权采样法(CARS)剔除区间波长中的无关变量,最后采用连续投影算法(SPA)进行波长精简。通过多特征串联ICO-CARS-SPA算法对X射线荧光光谱进行特征变量选择,得到5组(26、25、29、39、33)特征波长点,据此建立Cu、Zn、As、Pb、Cr 5种土壤重金属含量偏最小二乘(PLS)检测模型,并与其他传统特征波长选择方法进行了对比。结果表明,ICO-CARS-SPA算法所选变量结合偏最小二乘(PLS)的建模效果最优,Cu、Zn、As、Pb、Cr的验证集决定系数分别为0.9933、0.9926、0.9956、0.9932和0.9886,均方根误差分别为6.9385、23.6984、3.6326、8.5106和14.7645,验证集平均相对偏差分别为0.2551、0.0650、0.1025、0.2414、0.1047。基于X射线荧光光谱结合多特征串联策略的ICO-CARS-SPA算法可剔除更多无效波长,提升有效信息贡献度,简化了检测模型复杂度,为土壤重金属含量预测模型选取合适的特征波段提取方法提供了理论支撑。 展开更多
关键词 X射线荧光光谱(XRF) 土壤重金属 波长优选 模型集群分析
在线阅读 下载PDF
CARS特征变量优选近红外光谱法测定初烤烟烟叶厚度 被引量:4
7
作者 胡巍耀 凌军 +5 位作者 杨盼盼 杨式华 王玉 李伟 袁天军 李成斌 《云南农业大学学报(自然科学版)》 CSCD 北大核心 2017年第2期288-293,共6页
烤烟烟叶厚度是烤烟烟叶分级和品质评价的重要指标之一,采用近红外光谱分析技术实现对烟叶厚度的快速测定具有一定的可行性。对比分析了采用竞争自适应重加权法(CARS)算法优选特征变量和采用全波长变量(1 000~2 500 nm)结合偏最小二乘法... 烤烟烟叶厚度是烤烟烟叶分级和品质评价的重要指标之一,采用近红外光谱分析技术实现对烟叶厚度的快速测定具有一定的可行性。对比分析了采用竞争自适应重加权法(CARS)算法优选特征变量和采用全波长变量(1 000~2 500 nm)结合偏最小二乘法(PLS)建立初烤烟烟叶厚度近红外校正模型的效果。结果表明:模型的输入变量数由1 543个降低到180个,决定系数由0.846提高到0.941;适宜主成分数由10降低到6,校正标准误差和交互验证均方根误差分别降低了0.003 4和0.010 3。采用30个外部样品对模型进一步进行验证,模型的验证标准误差和验证标准误差的偏差由0.018 2降低到0.001 1,在α=0.05显著水平,两个模型预测值与实测值间均不存在显著差异,采用CARS筛选特征变量近红外模型预测值与实测值间的差异性更小。CARS筛选特征变量提高了烟叶厚度近红外校正模型的稳定性和预测准确性。 展开更多
关键词 初烤烟 厚度 近红外光谱法 模型集群分析 竞争自适应重加权法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部