期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
模型参数对卷积神经网络电容层析成像图像重建的影响 被引量:8
1
作者 汤政 雷刚 +2 位作者 王天祥 李健 许传龙 《仪器仪表学报》 EI CAS CSCD 北大核心 2021年第10期72-83,共12页
卷积神经网络凭借其较强的非线性拟合能力,在电容层析成像图像重建中逐渐得到应用。本文针对卷积神经网络模型超参数调节问题,研究了模型参数对卷积神经网络电容层析成像图像重建的影响。首先,通过数值方法构建了包含80000组随机流型与4... 卷积神经网络凭借其较强的非线性拟合能力,在电容层析成像图像重建中逐渐得到应用。本文针对卷积神经网络模型超参数调节问题,研究了模型参数对卷积神经网络电容层析成像图像重建的影响。首先,通过数值方法构建了包含80000组随机流型与40000组典型流型的“电容矩阵-介质分布”数据集;然后,通过该数据集中的训练集对不同超参数的卷积神经网络模型进行训练和验证,并系统研究了网络初始化、网格密度、卷积核数、全连接层神经元数以及隐藏层结构等超参数对图像重建精度的影响;接着,利用额外生成的12000组数据作为测试集对各网络模型性能进行评价;最后通过静态实验,对不同网络模型的图像重建效果进行了比较和分析。结果表明:网络隐藏层结构对图像重建精度影响较大,而网络初始化、网格密度、卷积核数以及全连接层神经元数等超参数对重建精度影响较小。 展开更多
关键词 电容层析成像 图像重建 卷积神经网络 模型超参数
在线阅读 下载PDF
融合动态卷积Transformer与CMA-ES的锂电池寿命预测方法
2
作者 王雄燃 张菁 《太阳能学报》 北大核心 2025年第6期1-8,共8页
锂电池寿命预测对能源管理和维护具有重要意义,为解决预测过程中复杂的多维时间序列数据、长时间依赖关系以及特征的动态变化等问题,提出一种基于动态卷积神经网络层和Transformer(DCF)、协方差矩阵自适应调整的进化策略(CMAES)和多头... 锂电池寿命预测对能源管理和维护具有重要意义,为解决预测过程中复杂的多维时间序列数据、长时间依赖关系以及特征的动态变化等问题,提出一种基于动态卷积神经网络层和Transformer(DCF)、协方差矩阵自适应调整的进化策略(CMAES)和多头自注意力机制的锂电池寿命预测模型。DCF通过动态提取时间序列中的关键特征,降低数据维度和冗余性,捕捉长时间依赖;CMA-ES优化模型超参数,增强模型对局部特征与全局依赖的建模能力;多头自注意力机制则进一步聚焦重要特征,处理复杂的非线性动态关系。使用NASA提供的公开锂电池数据集进行实验验证,结果表明该方法的平均绝对误差最小达到0.28%,优于大部分使用同一数据集的现有方法。实验结果进一步证明,模型在预测准确度和泛化能力上均有提升,尤其在长期寿命预测中展现出更高的精度和鲁棒性,可为锂电池的寿命预测提供更为可靠的技术支持。 展开更多
关键词 锂电池 卷积神经网络 协方差矩阵 多头自注意力机制 模型超参数 非线性
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部