-
题名基于统计和自适应ParNet的产学研绩效评价
被引量:2
- 1
-
-
作者
张睿
宋思琪
胡静
张永梅
柴艳峰
-
机构
太原科技大学计算机科学与技术学院
北方工业大学信息学院
-
出处
《计算机应用》
CSCD
北大核心
2024年第2期628-637,共10页
-
基金
教育部人文社会科学研究项目(23YJCZH299)
山西省研究生教育改革研究课题(2021YJJG244)
+3 种基金
山西省高等学校教学改革创新项目(J20230845,J2021429)
山西省产教融合研究生联合培养示范基地项目(2022JD11)
太原科技大学研究生联合培养示范基地项目(JD2022004)
太原科技大学教学改革与研究项目(JG202266,JG202267)。
-
文摘
针对现有产学研绩效评价体系及方法中存在的评价指标覆盖范围单一、评价样本特征表达不充分、评价模型自优化能力待提高的问题,提出主客观产学研综合绩效智能评价的评价体系及方法。首先,围绕三方合作主体,挖掘产学研合作过程中影响绩效的要素及这些要素之间的联系,自主构建主客观产学研绩效三级评价体系;其次,通过将收集到的离散序列评价样本映射至极坐标空间、马尔可夫转移矩阵等不同高维空间域,增强离散样本特征表征;然后,通过基于精英反向翻筋斗觅食的混沌优化策略设计,提高深度模型冗余压缩和超参数的全局寻优效率,构建轻量压缩及高维超参数的自适应寻优的ParNet(AParNet)分类模型;最后,将模型应用于产学研绩效评价中,实现高性能的绩效智能评价。实验结果表明,所提方法很好地贴合了离散序列非线性分类应用,同时模型中加入优化策略后,在减少计算量的同时提高了分类性能,具体体现在:与ParNet相比,AParNet中的参数量减少了10.8%,较好地实现了模型的压缩,且它在产学研绩效评价中的分类准确率可达到98.6%。在产学研绩效智能评价应用中,该方法提高了评价模型的自适应能力,能够实现准确、高效的产学研绩效评价。
-
关键词
产学研合作绩效评价
模糊统计
多空间域映射
卷积神经网络
模型自优化策略
-
Keywords
performance evaluation of industry-university-research cooperation
fuzzy statistics
multi-spatial domain mapping
Convolutional Neural Network(CNN)
model self-optimization strategy
-
分类号
TP183
[自动化与计算机技术—控制理论与控制工程]
-