High-Entropy Alloys(HEAs)exhibit significant potential across multiple domains due to their unique properties.However,conventional research methodologies face limitations in composition design,property prediction,and ...High-Entropy Alloys(HEAs)exhibit significant potential across multiple domains due to their unique properties.However,conventional research methodologies face limitations in composition design,property prediction,and process optimization,characterized by low efficiency and high costs.The integration of Artificial Intelligence(AI)technologies has provided innovative solutions for HEAs research.This review presented a detailed overview of recent advancements in AI applications for structural modeling and mechanical property prediction of HEAs.Furthermore,it discussed the advantages of big data analytics in facilitating alloy composition design and screening,quality control,and defect prediction,as well as the construction and sharing of specialized material databases.The paper also addressed the existing challenges in current AI-driven HEAs research,including issues related to data quality,model interpretability,and cross-domain knowledge integration.Additionally,it proposed prospects for the synergistic development of AI-enhanced computational materials science and experimental validation systems.展开更多
To investigate the effects of water and cyclic loading on dolomite’s mechanical properties during deep mining,mechanical experiments on non-pressure water absorption and cyclic loading were conducted.The findings rev...To investigate the effects of water and cyclic loading on dolomite’s mechanical properties during deep mining,mechanical experiments on non-pressure water absorption and cyclic loading were conducted.The findings reveal that the elastic modulus and Poisson ratio of dolomite fluctuate with increasing water content.The mass of water absorption is positively correlated with time and the water absorption stage can be divided into three stages:accelerated,decelerated,and stabilized stages.During this process,the number of pores in dolomite increases,while the pore diameter initially decreases and then fluctuates.Microscopic analysis shows that the proportion of mesopores first increases and then decreases,while micropores exhibit the opposite trend,and the proportion of macropores fluctuates around 0%.A model diagram of structural evolution during water absorption has been developed.Additionally,the softening process of dolomite’s water absorption strength is categorized into three stages:a relatively stable stage,an accelerated softening stage dominated by mesopore water absorption,and a decelerated softening stage characterized by micropore water absorption.A uniaxial damage constitutive model for dolomite under water influence was established based on the Weibull distribution and Mohr-Coulomb strength criterion,and experimental validation indicates its strong applicability.展开更多
Deformation characteristics of light weight soil with different EPS (expanded polystyrene) sizes were investigated by consolidation tests.The results show that the confined stress-strain relation curve is in S shape,w...Deformation characteristics of light weight soil with different EPS (expanded polystyrene) sizes were investigated by consolidation tests.The results show that the confined stress-strain relation curve is in S shape,which has a good homologous relation with e-p curve and e-lgp curve,and three types of curves reflect obvious structural characteristics of light weight soil.When cement mixed ratio and EPS volume ratio are the same for different specimens,structural strength decreases with the increase of EPS size,but compressibility indexes basically keep unchanged within the structural strength.The settlement of light weight soil can be divided into instantaneous settlement and primary consolidation settlement.It has no obvious rheology property,and 90% of total consolidation deformation can be finished in 1 min.Settlement-time relation of light weight soil can be predicted by the hyperbolic model.S-lgt curve of light weight soil is not in anti-S shape.It is proved that there is no secondary consolidation section,so consolidation coefficient cannot be obtained by time logarithm method.Structural strength and unit price decrease with the increase of EPS size,but the reducing rate of the structural strength is lower than that of the unit price,so the cost of mixed soil can be reduced by increasing the EPS size.The EPS beads with 3-5 mm in diameter are suggested to be used in the construction process,and the prescription of mixed soil can be optimized.展开更多
Discernment of seismic soil liquefaction is a complex and non-linear procedure that is affected by diversified factors of uncertainties and complexity.The Bayesian belief network(BBN)is an effective tool to present a ...Discernment of seismic soil liquefaction is a complex and non-linear procedure that is affected by diversified factors of uncertainties and complexity.The Bayesian belief network(BBN)is an effective tool to present a suitable framework to handle insights into such uncertainties and cause–effect relationships.The intention of this study is to use a hybrid approach methodology for the development of BBN model based on cone penetration test(CPT)case history records to evaluate seismic soil liquefaction potential.In this hybrid approach,naive model is developed initially only by an interpretive structural modeling(ISM)technique using domain knowledge(DK).Subsequently,some useful information about the naive model are embedded as DK in the K2 algorithm to develop a BBN-K2 and DK model.The results of the BBN models are compared and validated with the available artificial neural network(ANN)and C4.5 decision tree(DT)models and found that the BBN model developed by hybrid approach showed compatible and promising results for liquefaction potential assessment.The BBN model developed by hybrid approach provides a viable tool for geotechnical engineers to assess sites conditions susceptible to seismic soil liquefaction.This study also presents sensitivity analysis of the BBN model based on hybrid approach and the most probable explanation of liquefied sites,owing to know the most likely scenario of the liquefaction phenomenon.展开更多
With the purpose of enhancing effective collaboration between architects and structural engineers in the building design field, an integration tool was developed for supporting information exchange from architectural ...With the purpose of enhancing effective collaboration between architects and structural engineers in the building design field, an integration tool was developed for supporting information exchange from architectural model to structural model. The PKPM (Bopomofo acronym, a Chinese building design software) structural model and an industry foundation classes (IFC) data model were adopted and analyzed to design the framework of the integration tool. The technique of mixed program languages (C++ and FORTRAN) was applied to developing the tool software, and the connectivity relationships and intersection nodes between the structural elements were optimized and simplified. A case study was implemented to illustrate the method to use the integration tool for information exchange from IFC-format architectural model to PKPM structural model. The results show that the tool can extract the information of architectural model and form a corresponding structural model. The presented method can help to enhance the modeline efficiency at the structural design phase.展开更多
The extreme temperature differences in fiat steel box girder of a cable-stayed bridge were studied.Firstly,by using the long-term measurement data collected by the structural health monitoring system installed on the ...The extreme temperature differences in fiat steel box girder of a cable-stayed bridge were studied.Firstly,by using the long-term measurement data collected by the structural health monitoring system installed on the Runyang Cable-stayed Bridge,the daily variations as well as seasonal ones of measured temperature differences in the box girder cross-section area were summarized.The probability distribution models of temperature differences were further established and the extreme temperature differences were estimated with a return period of 100 years.Finally,the temperature difference models in cross-section area were proposed for bridge thermal design.The results show that horizontal temperature differences in top plate and vertical temperature differences between top plate and bottom plate are considerable.All the positive and negative temperature differences can be described by the weighted sum of two Weibull distributions.The maximum positive and negative horizontal temperature differences in top plate are 10.30 ℃ and -13.80 ℃,respectively.And the maximum positive and negative vertical temperature differences between top plate and bottom plate are 17.30 ℃ and-3.70 ℃,respectively.For bridge thermal design,there are two vertical temperature difference models between top plate and bottom plate,and six horizontal temperature difference models in top plate.展开更多
The predictive capacity of numerical analyses in geotechnical engineering depends strongly on the efficiency of constitutive models used for modeling of interfaces behavior.Interfaces are considered as thin layers of ...The predictive capacity of numerical analyses in geotechnical engineering depends strongly on the efficiency of constitutive models used for modeling of interfaces behavior.Interfaces are considered as thin layers of the soil adjacent to structures boundary whose major role is transferring loads from structures to soil masses.An interface model within the bounding surface plasticity framework and the critical state soil mechanics is presented.To this aim,general formulation of the interface model according to the bounding surface plasticity theory is described first.Similar to granular soils,it has been shown that the mechanical behavior of sand-structure interfaces is highly affected by the interface state that is the combined influences of density and applied normal stress.Therefore,several ingredients of the model are directly related to the interface state.As a result of this feature,the model is enabled to distinguish interfaces in dense state from those in loose state and to provide realistic predictions over wide ranges of density and normal stress values.In evaluation of the model,a reasonable correspondence between the model predictions and the experimental data of various research teams is found.展开更多
The constitutive model of rock can be built by mechanics elements because there are many kinds of damages in rock under varied loads.It is resumed that rock contains many microstructures and a structure of Bingham.The...The constitutive model of rock can be built by mechanics elements because there are many kinds of damages in rock under varied loads.It is resumed that rock contains many microstructures and a structure of Bingham.The microstructure consists of two embranchments that are the unit of a spring and a gliding slice in series and the unit of a spring and a cementation bar in series,the two units connect each other in parallel.These microstructures are arranged disorderly or in the order of a certain state.A certain distribution of microstructures represents one type of rock.Two kinds of rock's constitutive relationship were deduced by using the model.One is the model in which many parallel microstructures and a structure of Bingham connect in series.And it is used to homogeneous rock.The other is the model in which many microstructures and a structure of Bingham connect in series.And it is used to the rock with much crack or microcrack in a certain direction.The two kinds of constitutive relationship were verified by the studied cases.The constitutive model of rock built by using mechanics elements is verified to be reasonable.Moreover,different types of rocks may be described with mechanics elements with different distributions.展开更多
Solidification structure is critical in the control of the mechanical properties and quality during the continuous casting process. The thermo-physical properties of 13 Cr steel added some rare metals, such as Mo, V, ...Solidification structure is critical in the control of the mechanical properties and quality during the continuous casting process. The thermo-physical properties of 13 Cr steel added some rare metals, such as Mo, V, Nb, are measured to better understand the solidification structure of 13 Cr bloom. A computational model using CA-FE(cellular automation-finite element) method coupled with heat transfer model is developed to describe the solidification structure in continuous casting process. It is found that the calculated solidification structure is in good agreement with the observed data. The influence of casting speed and superheat on the solidification structure of the bloom is studied in detail. In order to obtain more equiaxed crystal ratio and low degree of the segregation in the bloom, the optimized casting speed 0.6 m/min and superheat less than 25 °C are determined for the caster. Using the optimized manufacturing parameters, these samples are 60% with the equiaxed zone ratio of 8%–10% and below the degree of segregation 1.05.展开更多
A new mechanics model, which reveals additional longitudinal force transmission between the continuously welded rails and the bridges, is established on the fact that the influence of the mutual relative displacement ...A new mechanics model, which reveals additional longitudinal force transmission between the continuously welded rails and the bridges, is established on the fact that the influence of the mutual relative displacement (among) the rail, the sleeper and the beam is taken into account. An example is presented and numerical results are compared. The results show that the additional longitudinal forces calculated with the new model are less than those of the previous, especially in the case of the flexible pier bridges. The new model is also suitable for the analysis of the additional longitudinal force transmission between rails and bridges of ballastless track with small resistance fasteners without taking the sleeper displacement into account, and compared with the ballast bridges, the ballastless bridges have a much stronger additional longitudinal force transmission between the continuously welded rails and the bridges.展开更多
In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-B...In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-BP hybrid algorithm was presented by uniting respective applicability of back-propagation artificial neural network (BP-ANN) and genetic algorithm (GA). The detailed process was as follows. Firstly, the GA trained the best weights and thresholds as the initial values of BP-ANN to initialize the neural network. Then, the BP-ANN after initialization was trained until the errors converged to the required precision. Finally, the network model, which met the requirements after being examined by the test samples, was applied to energy-absorption forecast of thin-walled cylindrical structure impacting. After example analysis, the GA-BP network model was trained until getting the desired network error only by 46 steps, while the single BP-ANN model achieved the same network error by 992 steps, which obviously shows that the GA-BP hybrid algorithm has faster convergence rate. The average relative forecast error (ARE) of the SEA predictive results obtained by GA-BP hybrid algorithm is 1.543%, while the ARE of the SEA predictive results obtained by BP-ANN is 2.950%, which clearly indicates that the forecast precision of the GA-BP hybrid algorithm is higher than that of the BP-ANN.展开更多
Detecting the moving vehicles in jittering traffic scenes is a very difficult problem because of the complex environment.Only by the color features of the pixel or only by the texture features of image cannot establis...Detecting the moving vehicles in jittering traffic scenes is a very difficult problem because of the complex environment.Only by the color features of the pixel or only by the texture features of image cannot establish a suitable background model for the moving vehicles. In order to solve this problem, the Gaussian pyramid layered algorithm is proposed, combining with the advantages of the Codebook algorithm and the Local binary patterns(LBP) algorithm. Firstly, the image pyramid is established to eliminate the noises generated by the camera shake. Then, codebook model and LBP model are constructed on the low-resolution level and the high-resolution level of Gaussian pyramid, respectively. At last, the final test results are obtained through a set of operations according to the spatial relations of pixels. The experimental results show that this algorithm can not only eliminate the noises effectively, but also save the calculating time with high detection sensitivity and high detection accuracy.展开更多
The conventional linear quadratic regulator(LQR) control algorithm is one of the most popular active control algorithms.One important issue for LQR control algorithm is the reduction of structure's degrees of free...The conventional linear quadratic regulator(LQR) control algorithm is one of the most popular active control algorithms.One important issue for LQR control algorithm is the reduction of structure's degrees of freedom(DOF). In this work, an LQR control algorithm with superelement model is intended to solve this issue leading to the fact that LQR control algorithm can be used in large finite element(FE) model for structure. In proposed model, the Craig-Bampton(C-B) method, which is one of the component mode syntheses(CMS), is used to establish superelement modeling to reduce structure's DOF and applied to LQR control algorithm to calculate Kalman gain matrix and obtain control forces. And then, the control forces are applied to original structure to simulate the responses of structure by vibration control. And some examples are given. The results show the computational efficiency of proposed model using synthesized models is higher than that of the classical method of LQR control when the DOF of structure is large. And the accuracy of proposed model is well. Meanwhile, the results show that the proposed control has more effects of vibration absorption on the ground structures than underground structures.展开更多
A new method of system failure analysis was proposed. First, considering the relationships between the failure subsystems,the decision making trial and evaluation laboratory(DEMATEL) method was used to calculate the d...A new method of system failure analysis was proposed. First, considering the relationships between the failure subsystems,the decision making trial and evaluation laboratory(DEMATEL) method was used to calculate the degree of correlation between the failure subsystems, analyze the combined effect of related failures, and obtain the degree of correlation by using the directed graph and matrix operations. Then, the interpretative structural modeling(ISM) method was combined to intuitively show the logical relationship of many failure subsystems and their influences on each other by using multilevel hierarchical structure model and obtaining the critical subsystems. Finally, failure mode effects and criticality analysis(FMECA) was used to perform a qualitative hazard analysis of critical subsystems, determine the critical failure mode, and clarify the direction of reliability improvement.Through an example, the result demonstrates that the proposed method can be efficiently applied to system failure analysis problems.展开更多
The problem considered here is to assess the Bayesian influence on the unknown param-eter matrices in a grwoth curve model with the general covariance structure.Under the non-information prior distribution assumption,...The problem considered here is to assess the Bayesian influence on the unknown param-eter matrices in a grwoth curve model with the general covariance structure.Under the non-information prior distribution assumption,the Kullback-Leibler divergence is employed to eval-uate the effect of a designated response matrix on the posterior distribution of the parameter matrix.展开更多
Faults and fractures of multiple scales are frequently induced and generated in compressional structural system. Comprehensive identification of these potential faults and fractures that cannot be distinguished direct...Faults and fractures of multiple scales are frequently induced and generated in compressional structural system. Comprehensive identification of these potential faults and fractures that cannot be distinguished directly from seismic profile of the complex structures is still an unanswered problem. Based on the compressional structural geometry and kinematics theories as well as the structural interpretation from seismic data, a set of techniques is established for the identification of potential faults and fractures in compressional structures. Firstly, three-dimensional(3D) patterns and characteristics of the faults directly interpreted from seismic profile were illustrated by 3D structural model. Then, the unfolding index maps, the principal structural curvature maps, and tectonic stress field maps were obtained from structural restoration. Moreover, potential faults and fractures in compressional structures were quantitatively identified relying on comprehensive analysis of these three maps. Successful identification of the potential faults and fractures in Mishrif limestone formation and in Asmari dolomite formation of Buzurgan anticline in Iraq demonstrates the applicability and reliability of these techniques.展开更多
Field geological work, field engineering monitoring, laboratory experiments and numerical simulation were used to study the development characteristics of pore-fracture system and hydraulic fracture of No.3 coal reser...Field geological work, field engineering monitoring, laboratory experiments and numerical simulation were used to study the development characteristics of pore-fracture system and hydraulic fracture of No.3 coal reservoir in Southern Qinshui Basin. Flow patterns of methane and water in pore-fracture system and hydraulic fracture were discussed by using limit method and average method. Based on the structure model and flow pattern of post-fracturing high-rank coal reservoir, flow patterns of methane and water were established. Results show that seepage pattern of methane in pore-fracture system is linked with pore diameter, fracture width, coal bed pressure and flow velocity. While in hydraulic fracture, it is controlled by fracture height, pressure and flow velocity. Seepage pattern of water in pore-fracture system is linked with pore diameter, fracture width and flow velocity. While in hydraulic fracture, it is controlled by fracture height and flow velocity. Pores and fractures in different sizes are linked up by ultramicroscopic fissures, micro-fissures and hydraulic fracture. In post-fracturing high-rank coal reservoir, methane has level-three flow and gets through triple medium to the wellbore; and water passes mainly through double medium to the wellbore which is level-two flow.展开更多
Shell-and-tube vaporizers are the most commonly used and dominated types of vaporizers in liquefied natural gas (LNG) realm. Due to efficient performance, shell-side flow in this type of vaporizers has received cons...Shell-and-tube vaporizers are the most commonly used and dominated types of vaporizers in liquefied natural gas (LNG) realm. Due to efficient performance, shell-side flow in this type of vaporizers has received considerable attention and has been investigated extensively. However, the detailed flow structure in the shell needs to be determined for reliable and effective design. Therefore, the objective of this study was to clarify the flow structure in shell by particle image velocimetry (PIV). Experiments were conducted using two types of model; 15% baffle cut having inlet and outlet positions !n the direction of 90° to the cut and 30% baffle cut having inlet and outlet positions in the direction of 180° to the cut. Each test section is 169 mm in inner diameter and 344.6 mm in length. The flow features were characterized in different baffle cuts with regards to the velocity vector field and velocity distribution. The results show that the flow characteristics of 15% baffle cut type vaporizer are comparable to those of 30% baffle cut type vaporizer.展开更多
For the 110 mining method,it is challenging to accurately calculate the support resistance of the roadway due to the lack of understanding of the dynamic movement of the overlying strata in this method.The consequenti...For the 110 mining method,it is challenging to accurately calculate the support resistance of the roadway due to the lack of understanding of the dynamic movement of the overlying strata in this method.The consequential excessive support results in a significant increase in the cost of roadway support.The authors explored the overlying strata movement and roadway deformation of the gob-entry retaining in the 110 mining method to solve this problem.First,the typical stages of the roof-cutting gob-side entry were defined.Second,the mechanical model and calculation formula of the support resistance on the roof were explored.Then,using numerical simulation software,the starting ranges of the specific supports at different stages were verified and the feasibility of the support scheme was examined.Finally,combined with the field measurement data,the stress and the deformation of the gob roadway at different stages under the influence of two mining processes in the 110 mining method were obtained.The numerical simulation results obtained are consistent with the field test results,providing a theoretical basis for precision support at different stages by the 110 mining method.展开更多
文摘High-Entropy Alloys(HEAs)exhibit significant potential across multiple domains due to their unique properties.However,conventional research methodologies face limitations in composition design,property prediction,and process optimization,characterized by low efficiency and high costs.The integration of Artificial Intelligence(AI)technologies has provided innovative solutions for HEAs research.This review presented a detailed overview of recent advancements in AI applications for structural modeling and mechanical property prediction of HEAs.Furthermore,it discussed the advantages of big data analytics in facilitating alloy composition design and screening,quality control,and defect prediction,as well as the construction and sharing of specialized material databases.The paper also addressed the existing challenges in current AI-driven HEAs research,including issues related to data quality,model interpretability,and cross-domain knowledge integration.Additionally,it proposed prospects for the synergistic development of AI-enhanced computational materials science and experimental validation systems.
基金Project(IMRI23005)supported by Ordos Science and Technology Bureau,ChinaProjects(52174096,52304110)supported by the National Natural Science Foundation of China。
文摘To investigate the effects of water and cyclic loading on dolomite’s mechanical properties during deep mining,mechanical experiments on non-pressure water absorption and cyclic loading were conducted.The findings reveal that the elastic modulus and Poisson ratio of dolomite fluctuate with increasing water content.The mass of water absorption is positively correlated with time and the water absorption stage can be divided into three stages:accelerated,decelerated,and stabilized stages.During this process,the number of pores in dolomite increases,while the pore diameter initially decreases and then fluctuates.Microscopic analysis shows that the proportion of mesopores first increases and then decreases,while micropores exhibit the opposite trend,and the proportion of macropores fluctuates around 0%.A model diagram of structural evolution during water absorption has been developed.Additionally,the softening process of dolomite’s water absorption strength is categorized into three stages:a relatively stable stage,an accelerated softening stage dominated by mesopore water absorption,and a decelerated softening stage characterized by micropore water absorption.A uniaxial damage constitutive model for dolomite under water influence was established based on the Weibull distribution and Mohr-Coulomb strength criterion,and experimental validation indicates its strong applicability.
基金Project(2012JQ7013)supported by the Natural Science Foundation of Shaanxi Province,ChinaProject(QN2012025)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(2011BSJJ084)supported by Research Foundation of Northwest A&F University,China
文摘Deformation characteristics of light weight soil with different EPS (expanded polystyrene) sizes were investigated by consolidation tests.The results show that the confined stress-strain relation curve is in S shape,which has a good homologous relation with e-p curve and e-lgp curve,and three types of curves reflect obvious structural characteristics of light weight soil.When cement mixed ratio and EPS volume ratio are the same for different specimens,structural strength decreases with the increase of EPS size,but compressibility indexes basically keep unchanged within the structural strength.The settlement of light weight soil can be divided into instantaneous settlement and primary consolidation settlement.It has no obvious rheology property,and 90% of total consolidation deformation can be finished in 1 min.Settlement-time relation of light weight soil can be predicted by the hyperbolic model.S-lgt curve of light weight soil is not in anti-S shape.It is proved that there is no secondary consolidation section,so consolidation coefficient cannot be obtained by time logarithm method.Structural strength and unit price decrease with the increase of EPS size,but the reducing rate of the structural strength is lower than that of the unit price,so the cost of mixed soil can be reduced by increasing the EPS size.The EPS beads with 3-5 mm in diameter are suggested to be used in the construction process,and the prescription of mixed soil can be optimized.
基金Projects(2016YFE0200100,2018YFC1505300-5.3)supported by the National Key Research&Development Plan of ChinaProject(51639002)supported by the Key Program of National Natural Science Foundation of China
文摘Discernment of seismic soil liquefaction is a complex and non-linear procedure that is affected by diversified factors of uncertainties and complexity.The Bayesian belief network(BBN)is an effective tool to present a suitable framework to handle insights into such uncertainties and cause–effect relationships.The intention of this study is to use a hybrid approach methodology for the development of BBN model based on cone penetration test(CPT)case history records to evaluate seismic soil liquefaction potential.In this hybrid approach,naive model is developed initially only by an interpretive structural modeling(ISM)technique using domain knowledge(DK).Subsequently,some useful information about the naive model are embedded as DK in the K2 algorithm to develop a BBN-K2 and DK model.The results of the BBN models are compared and validated with the available artificial neural network(ANN)and C4.5 decision tree(DT)models and found that the BBN model developed by hybrid approach showed compatible and promising results for liquefaction potential assessment.The BBN model developed by hybrid approach provides a viable tool for geotechnical engineers to assess sites conditions susceptible to seismic soil liquefaction.This study also presents sensitivity analysis of the BBN model based on hybrid approach and the most probable explanation of liquefied sites,owing to know the most likely scenario of the liquefaction phenomenon.
基金Project(2006BAJ01B01-01) supported by the National Key Technologies R&D Program of China during the 11th Five-Year Plan Period
文摘With the purpose of enhancing effective collaboration between architects and structural engineers in the building design field, an integration tool was developed for supporting information exchange from architectural model to structural model. The PKPM (Bopomofo acronym, a Chinese building design software) structural model and an industry foundation classes (IFC) data model were adopted and analyzed to design the framework of the integration tool. The technique of mixed program languages (C++ and FORTRAN) was applied to developing the tool software, and the connectivity relationships and intersection nodes between the structural elements were optimized and simplified. A case study was implemented to illustrate the method to use the integration tool for information exchange from IFC-format architectural model to PKPM structural model. The results show that the tool can extract the information of architectural model and form a corresponding structural model. The presented method can help to enhance the modeline efficiency at the structural design phase.
基金Project(51178100)supported by the National Natural Science Foundation of ChinaProject(1105007001)supported by the Foundation of the Priority Academic Development Program of Higher Education Institute of Jiangsu Province,ChinaProject(3205001205)supported by the Teaching and Research Foundation for Excellent Young Teachers of Southeast University,China
文摘The extreme temperature differences in fiat steel box girder of a cable-stayed bridge were studied.Firstly,by using the long-term measurement data collected by the structural health monitoring system installed on the Runyang Cable-stayed Bridge,the daily variations as well as seasonal ones of measured temperature differences in the box girder cross-section area were summarized.The probability distribution models of temperature differences were further established and the extreme temperature differences were estimated with a return period of 100 years.Finally,the temperature difference models in cross-section area were proposed for bridge thermal design.The results show that horizontal temperature differences in top plate and vertical temperature differences between top plate and bottom plate are considerable.All the positive and negative temperature differences can be described by the weighted sum of two Weibull distributions.The maximum positive and negative horizontal temperature differences in top plate are 10.30 ℃ and -13.80 ℃,respectively.And the maximum positive and negative vertical temperature differences between top plate and bottom plate are 17.30 ℃ and-3.70 ℃,respectively.For bridge thermal design,there are two vertical temperature difference models between top plate and bottom plate,and six horizontal temperature difference models in top plate.
文摘The predictive capacity of numerical analyses in geotechnical engineering depends strongly on the efficiency of constitutive models used for modeling of interfaces behavior.Interfaces are considered as thin layers of the soil adjacent to structures boundary whose major role is transferring loads from structures to soil masses.An interface model within the bounding surface plasticity framework and the critical state soil mechanics is presented.To this aim,general formulation of the interface model according to the bounding surface plasticity theory is described first.Similar to granular soils,it has been shown that the mechanical behavior of sand-structure interfaces is highly affected by the interface state that is the combined influences of density and applied normal stress.Therefore,several ingredients of the model are directly related to the interface state.As a result of this feature,the model is enabled to distinguish interfaces in dense state from those in loose state and to provide realistic predictions over wide ranges of density and normal stress values.In evaluation of the model,a reasonable correspondence between the model predictions and the experimental data of various research teams is found.
基金Projects(10472134,50490274) supported by the National Natural Science Foundation of China
文摘The constitutive model of rock can be built by mechanics elements because there are many kinds of damages in rock under varied loads.It is resumed that rock contains many microstructures and a structure of Bingham.The microstructure consists of two embranchments that are the unit of a spring and a gliding slice in series and the unit of a spring and a cementation bar in series,the two units connect each other in parallel.These microstructures are arranged disorderly or in the order of a certain state.A certain distribution of microstructures represents one type of rock.Two kinds of rock's constitutive relationship were deduced by using the model.One is the model in which many parallel microstructures and a structure of Bingham connect in series.And it is used to homogeneous rock.The other is the model in which many microstructures and a structure of Bingham connect in series.And it is used to the rock with much crack or microcrack in a certain direction.The two kinds of constitutive relationship were verified by the studied cases.The constitutive model of rock built by using mechanics elements is verified to be reasonable.Moreover,different types of rocks may be described with mechanics elements with different distributions.
基金Projects(51274057,51474057) supported by the National Natural Science Foundation of ChinaProject(2012AA03A508) supported by the High-tech Research and Development Program of China
文摘Solidification structure is critical in the control of the mechanical properties and quality during the continuous casting process. The thermo-physical properties of 13 Cr steel added some rare metals, such as Mo, V, Nb, are measured to better understand the solidification structure of 13 Cr bloom. A computational model using CA-FE(cellular automation-finite element) method coupled with heat transfer model is developed to describe the solidification structure in continuous casting process. It is found that the calculated solidification structure is in good agreement with the observed data. The influence of casting speed and superheat on the solidification structure of the bloom is studied in detail. In order to obtain more equiaxed crystal ratio and low degree of the segregation in the bloom, the optimized casting speed 0.6 m/min and superheat less than 25 °C are determined for the caster. Using the optimized manufacturing parameters, these samples are 60% with the equiaxed zone ratio of 8%–10% and below the degree of segregation 1.05.
文摘A new mechanics model, which reveals additional longitudinal force transmission between the continuously welded rails and the bridges, is established on the fact that the influence of the mutual relative displacement (among) the rail, the sleeper and the beam is taken into account. An example is presented and numerical results are compared. The results show that the additional longitudinal forces calculated with the new model are less than those of the previous, especially in the case of the flexible pier bridges. The new model is also suitable for the analysis of the additional longitudinal force transmission between rails and bridges of ballastless track with small resistance fasteners without taking the sleeper displacement into account, and compared with the ballast bridges, the ballastless bridges have a much stronger additional longitudinal force transmission between the continuously welded rails and the bridges.
基金Project(50175110) supported by the National Natural Science Foundation of ChinaProject(2009bsxt019) supported by the Graduate Degree Thesis Innovation Foundation of Central South University, China
文摘In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-BP hybrid algorithm was presented by uniting respective applicability of back-propagation artificial neural network (BP-ANN) and genetic algorithm (GA). The detailed process was as follows. Firstly, the GA trained the best weights and thresholds as the initial values of BP-ANN to initialize the neural network. Then, the BP-ANN after initialization was trained until the errors converged to the required precision. Finally, the network model, which met the requirements after being examined by the test samples, was applied to energy-absorption forecast of thin-walled cylindrical structure impacting. After example analysis, the GA-BP network model was trained until getting the desired network error only by 46 steps, while the single BP-ANN model achieved the same network error by 992 steps, which obviously shows that the GA-BP hybrid algorithm has faster convergence rate. The average relative forecast error (ARE) of the SEA predictive results obtained by GA-BP hybrid algorithm is 1.543%, while the ARE of the SEA predictive results obtained by BP-ANN is 2.950%, which clearly indicates that the forecast precision of the GA-BP hybrid algorithm is higher than that of the BP-ANN.
基金Project(61172047)supported by the National Natural Science Foundation of China
文摘Detecting the moving vehicles in jittering traffic scenes is a very difficult problem because of the complex environment.Only by the color features of the pixel or only by the texture features of image cannot establish a suitable background model for the moving vehicles. In order to solve this problem, the Gaussian pyramid layered algorithm is proposed, combining with the advantages of the Codebook algorithm and the Local binary patterns(LBP) algorithm. Firstly, the image pyramid is established to eliminate the noises generated by the camera shake. Then, codebook model and LBP model are constructed on the low-resolution level and the high-resolution level of Gaussian pyramid, respectively. At last, the final test results are obtained through a set of operations according to the spatial relations of pixels. The experimental results show that this algorithm can not only eliminate the noises effectively, but also save the calculating time with high detection sensitivity and high detection accuracy.
基金Project(LZ2015022)supported by Educational Commission of Liaoning Province of ChinaProjects(51138001,51178081)supported by the National Natural Science Foundation of China+1 种基金Project(2013CB035905)supported by the Basic Research Program of ChinaProjects(DUT15LK34,DUT14QY10)supported by Fundamental Research Funds for the Central Universities,China
文摘The conventional linear quadratic regulator(LQR) control algorithm is one of the most popular active control algorithms.One important issue for LQR control algorithm is the reduction of structure's degrees of freedom(DOF). In this work, an LQR control algorithm with superelement model is intended to solve this issue leading to the fact that LQR control algorithm can be used in large finite element(FE) model for structure. In proposed model, the Craig-Bampton(C-B) method, which is one of the component mode syntheses(CMS), is used to establish superelement modeling to reduce structure's DOF and applied to LQR control algorithm to calculate Kalman gain matrix and obtain control forces. And then, the control forces are applied to original structure to simulate the responses of structure by vibration control. And some examples are given. The results show the computational efficiency of proposed model using synthesized models is higher than that of the classical method of LQR control when the DOF of structure is large. And the accuracy of proposed model is well. Meanwhile, the results show that the proposed control has more effects of vibration absorption on the ground structures than underground structures.
基金Project(51275205)supported by the National Natural Science Foundation of China
文摘A new method of system failure analysis was proposed. First, considering the relationships between the failure subsystems,the decision making trial and evaluation laboratory(DEMATEL) method was used to calculate the degree of correlation between the failure subsystems, analyze the combined effect of related failures, and obtain the degree of correlation by using the directed graph and matrix operations. Then, the interpretative structural modeling(ISM) method was combined to intuitively show the logical relationship of many failure subsystems and their influences on each other by using multilevel hierarchical structure model and obtaining the critical subsystems. Finally, failure mode effects and criticality analysis(FMECA) was used to perform a qualitative hazard analysis of critical subsystems, determine the critical failure mode, and clarify the direction of reliability improvement.Through an example, the result demonstrates that the proposed method can be efficiently applied to system failure analysis problems.
文摘The problem considered here is to assess the Bayesian influence on the unknown param-eter matrices in a grwoth curve model with the general covariance structure.Under the non-information prior distribution assumption,the Kullback-Leibler divergence is employed to eval-uate the effect of a designated response matrix on the posterior distribution of the parameter matrix.
基金Project(2014CB239205)supported by the National Basic Research Program of ChinaProject(20011ZX05030-005-003)supported by the National Science and Technology Major Project of China
文摘Faults and fractures of multiple scales are frequently induced and generated in compressional structural system. Comprehensive identification of these potential faults and fractures that cannot be distinguished directly from seismic profile of the complex structures is still an unanswered problem. Based on the compressional structural geometry and kinematics theories as well as the structural interpretation from seismic data, a set of techniques is established for the identification of potential faults and fractures in compressional structures. Firstly, three-dimensional(3D) patterns and characteristics of the faults directly interpreted from seismic profile were illustrated by 3D structural model. Then, the unfolding index maps, the principal structural curvature maps, and tectonic stress field maps were obtained from structural restoration. Moreover, potential faults and fractures in compressional structures were quantitatively identified relying on comprehensive analysis of these three maps. Successful identification of the potential faults and fractures in Mishrif limestone formation and in Asmari dolomite formation of Buzurgan anticline in Iraq demonstrates the applicability and reliability of these techniques.
基金Projects(41330638,41272154)supported by the National Natural Science Foundation of ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),ChinaProject(2014M551705)supported by the China Postdoctoral Science Foundation
文摘Field geological work, field engineering monitoring, laboratory experiments and numerical simulation were used to study the development characteristics of pore-fracture system and hydraulic fracture of No.3 coal reservoir in Southern Qinshui Basin. Flow patterns of methane and water in pore-fracture system and hydraulic fracture were discussed by using limit method and average method. Based on the structure model and flow pattern of post-fracturing high-rank coal reservoir, flow patterns of methane and water were established. Results show that seepage pattern of methane in pore-fracture system is linked with pore diameter, fracture width, coal bed pressure and flow velocity. While in hydraulic fracture, it is controlled by fracture height, pressure and flow velocity. Seepage pattern of water in pore-fracture system is linked with pore diameter, fracture width and flow velocity. While in hydraulic fracture, it is controlled by fracture height and flow velocity. Pores and fractures in different sizes are linked up by ultramicroscopic fissures, micro-fissures and hydraulic fracture. In post-fracturing high-rank coal reservoir, methane has level-three flow and gets through triple medium to the wellbore; and water passes mainly through double medium to the wellbore which is level-two flow.
基金supported by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2010-013-D00007)2010 Research Professor Fund of Gyeongsang National University,Korea
文摘Shell-and-tube vaporizers are the most commonly used and dominated types of vaporizers in liquefied natural gas (LNG) realm. Due to efficient performance, shell-side flow in this type of vaporizers has received considerable attention and has been investigated extensively. However, the detailed flow structure in the shell needs to be determined for reliable and effective design. Therefore, the objective of this study was to clarify the flow structure in shell by particle image velocimetry (PIV). Experiments were conducted using two types of model; 15% baffle cut having inlet and outlet positions !n the direction of 90° to the cut and 30% baffle cut having inlet and outlet positions in the direction of 180° to the cut. Each test section is 169 mm in inner diameter and 344.6 mm in length. The flow features were characterized in different baffle cuts with regards to the velocity vector field and velocity distribution. The results show that the flow characteristics of 15% baffle cut type vaporizer are comparable to those of 30% baffle cut type vaporizer.
基金Project(51674265) supported by the National Natural Science Foundation of ChinaProjects(2018YFC0603705,2016YFC0600901) supported by the State Key Research Development Program of ChinaProject supported by the Yueqi Outstanding Scholar Award Program of China University of Mining&Technology,Beijing,China。
文摘For the 110 mining method,it is challenging to accurately calculate the support resistance of the roadway due to the lack of understanding of the dynamic movement of the overlying strata in this method.The consequential excessive support results in a significant increase in the cost of roadway support.The authors explored the overlying strata movement and roadway deformation of the gob-entry retaining in the 110 mining method to solve this problem.First,the typical stages of the roof-cutting gob-side entry were defined.Second,the mechanical model and calculation formula of the support resistance on the roof were explored.Then,using numerical simulation software,the starting ranges of the specific supports at different stages were verified and the feasibility of the support scheme was examined.Finally,combined with the field measurement data,the stress and the deformation of the gob roadway at different stages under the influence of two mining processes in the 110 mining method were obtained.The numerical simulation results obtained are consistent with the field test results,providing a theoretical basis for precision support at different stages by the 110 mining method.